TMD9 Gates

TMD9 Gates

Week 3:

Task 1: Describe the issues associated with K-means algorithm, and explain the mitigating options.

Task 2: The dataset we are going to use has 1000 entries with unknown number of clusters . Use the Elbow Method to find the optimum value for K and show the results for clustering using the optimum k.

Data:

2.74 3.83

-1.55 -6.31

-11.54 -4.83

4.58 3.84

-3.69 -8.41

-2.48 -10.49

4.03 5.22

-2.36 -9.90

-8.26 -3.20

-9.60 -2.42

-2.26 -8.95

2.54 3.45

-3.80 -10.00

-1.35 -4.06

2.77 3.91

-1.98 -11.03

2.19 2.18

-12.04 -3.94

-1.34 -5.76

-1.36 -8.57

4.03 2.43

-2.47 -8.64

-9.99 -6.09

-10.62 -4.53

-10.43 -4.33

-1.94 -5.58

-2.53 -8.85

2.88 5.90

2.80 3.58

-2.10 -9.21

-10.88 -5.74

-10.34 -3.33

-3.81 -5.61

-8.03 -6.38

-0.92 -6.87

-2.39 -3.51

-2.00 -9.43

-9.47 -4.55

-9.00 -6.01

-2.69 -8.73

-1.33 -9.08

3.78 4.57

-9.58 -3.30

-1.22 -10.95

-8.48 -3.65

-1.60 -10.23

0.74 4.61

0.42 -4.58

3.19 3.58

-1.46 -5.72

-10.68 -5.29

-3.21 -9.12

-3.02 -7.74

-11.03 -5.27

-2.94 -8.26

-2.62 -6.29

-0.40 -9.01

-11.81 -6.11

-10.03 -5.48

5.13 4.22

-4.22 -9.44

-2.01 -9.56

-1.81 -5.85

-1.27 -6.06

-2.83 -9.47

2.55 2.56

3.27 3.65

-2.15 -4.91

-3.00 -10.06

-8.83 -4.97

-3.06 -4.15

-9.11 -4.57

-11.05 -4.62

3.63 4.96

2.06 4.10

-3.73 -9.44

-1.04 -6.32

-8.88 -3.06

-4.16 -11.18

-12.40 -3.43

-3.11 -6.57

-9.89 -3.66

4.43 3.06

-2.81 -7.58

-0.69 -6.57

-0.41 -6.67

4.98 5.85

2.53 3.43

-2.89 -7.40

4.05 3.94

-1.16 -6.42

-3.07 -9.08

-9.59 -4.47

-2.44 -5.90

-1.07 -5.90

-0.94 -4.43

-2.01 -10.95

-9.80 -4.78

-10.36 -4.97

-3.56 -7.53

2.67 6.05

-10.14 -2.52

-9.65 -6.22

-2.49 -8.97

-3.44 -7.78

-2.31 -7.95

4.23 4.46

-2.82 -5.43

1.77 3.98

-11.32 -3.85

1.73 3.62

-1.63 -6.36

-10.53 -4.92

-2.85 -9.56

-2.32 -7.65

-2.85 -8.74

-1.99 -5.19

-10.70 -2.43

2.81 4.83

-2.27 -5.76

-3.24 -8.95

4.11 5.52

2.15 3.83

-0.55 -6.83

-3.64 -8.70

-2.33 -9.05

-10.51 -5.90

-9.21 -4.87

-0.10 -6.23

-10.45 -2.85

-3.28 -9.94

-1.22 -6.26

-10.54 -5.07

-0.68 -9.71

-0.93 -5.89

3.24 4.27

3.09 3.91

-2.65 -9.96

-9.32 -4.24

0.23 -5.65

-2.68 -7.28

-1.41 -7.84

4.62 4.67

1.49 6.26

-2.04 -5.89

-2.25 -8.20

-2.97 -9.02

-7.85 -5.95

-1.71 -7.74

-2.87 -5.10

-3.52 -5.17

-2.09 -8.15

-0.97 -5.80

-1.27 -3.72

-3.20 -8.97

-10.73 -4.00

-8.70 -4.15

-10.45 -2.83

-2.58 -6.73

3.34 3.29

-12.11 -3.89

3.18 5.74

-2.14 -5.52

3.77 5.59

3.87 3.35

3.47 4.45

3.09 3.91

-2.54 -9.47

-9.38 -5.51

-2.55 -8.02

3.69 4.37

-2.06 -9.52

-0.59 -8.26

-9.16 -3.46

-0.02 -6.07

2.84 4.51

-7.77 -4.98

-2.98 -6.04

3.45 4.58

-0.56 -4.65

-2.58 -7.11

-9.26 -5.60

-8.43 -3.49

3.28 3.13

2.00 3.88

3.62 3.19

-2.53 -4.31

-3.58 -5.54

4.13 3.35

-4.14 -8.44

-2.82 -5.24

3.13 4.85

-8.33 -4.53

-2.07 -8.55

2.85 4.82

-3.30 -8.40

-10.74 -5.87

4.86 3.44

0.53 -8.82

-3.34 -7.98

-2.37 -8.52

-3.39 -6.35

-1.26 -4.75

-5.18 -9.70

-1.21 -4.53

-2.44 -7.52

-3.87 -5.97

-9.95 -4.24

-1.45 -6.02

-10.10 -4.74

2.53 3.94

-2.75 -9.95

-10.34 -5.62

-2.28 -6.53

-8.81 -4.43

3.11 5.81

-1.76 -10.15

-1.89 -10.95

1.92 5.09

-9.97 -5.08

-11.00 -4.59

-0.27 -5.28

2.04 5.54

2.96 5.30

-10.38 -4.20

-1.45 -6.35

3.52 5.03

-1.15 -8.94

-2.09 -3.88

2.41 3.10

2.74 6.12

-9.50 -5.59

-0.31 -6.97

-7.87 -4.87

-0.74 -6.01

-2.27 -9.97

-4.30 -8.04

1.30 4.62

-11.42 -4.19

2.99 4.77

-10.34 -4.02

-0.44 -7.32

3.40 4.56

-2.29 -9.57

0.04 -5.23

4.42 2.06

-2.38 -5.34

2.96 4.72

-9.31 -5.34

0.05 -3.91

3.80 3.56

-8.52 -6.77

-3.38 -5.98

2.11 4.94

-10.42 -4.47

-9.28 -5.60

-9.97 -5.62

1.41 2.65

3.50 4.84

4.64 3.64

3.79 5.26

-1.30 -4.79

-8.19 -4.43

4.59 5.05

-3.82 -10.01

2.85 3.71

-2.12 -3.99

-1.78 -10.17

-9.17 -4.86

-0.28 -4.23

-0.62 -7.14

-11.23 -5.31

0.63 2.55

-0.98 -6.22

-9.40 -4.44

-1.43 -9.22

-10.31 -3.88

-8.61 -4.40

-1.91 -4.75

-1.88 -9.20

4.92 4.25

-2.97 -5.65

-8.38 -4.44

-3.01 -8.98

-10.11 -4.09

2.44 4.84

3.84 3.54

-1.08 -9.04

-2.78 -4.43

-2.00 -7.06

3.97 5.15

-1.94 -10.04

-2.59 -10.27

-1.57 -9.16

-3.30 -8.13

-1.61 -9.05

2.81 3.99

-9.74 -4.37

2.84 3.89

3.74 5.99

-10.49 -3.98

-0.87 -8.15

-10.70 -4.47

2.36 4.34

-9.73 -5.48

1.23 5.36

2.48 2.96

-1.61 -6.27

-3.23 -10.24

-10.85 -6.07

-1.80 -5.68

-0.96 -10.44

-9.94 -4.90

-1.41 -5.81

-8.99 -4.87

-3.60 -5.28

-0.17 -5.01

-9.59 -4.10

-2.36 -4.70

1.95 3.65

-9.60 -5.50

4.05 4.97

-7.91 -5.26

4.57 4.10

-2.04 -9.95

-10.26 -5.25

-3.55 -5.16

-11.87 -4.16

2.90 4.83

-10.94 -4.46

-7.21 -5.12

-2.51 -8.06

-2.36 -10.21

-2.64 -7.21

-1.65 -9.51

-9.47 -4.83

0.22 -6.10

-2.69 -9.40

-10.68 -2.31

3.15 4.07

3.55 5.11

-1.08 -4.99

-7.92 -5.03

-2.72 -8.31

-3.06 -10.60

2.15 3.66

-8.67 -4.33

-9.47 -3.17

-2.61 -8.65

-1.75 -7.01

-1.37 -7.42

-1.17 -4.31

2.64 5.35

2.83 3.29

3.16 5.43

4.60 3.99

-9.75 -5.81

-11.92 -3.26

-10.85 -4.94

4.22 5.21

-2.85 -4.37

3.11 5.09

-1.41 -6.19

-11.79 -4.91

-1.69 -8.40

-2.80 -10.13

-1.84 -6.39

-1.38 -9.16

-0.36 -4.40

-2.33 -8.02

-2.00 -9.78

-9.35 -4.91

1.92 5.02

-0.11 -7.06

3.83 4.17

1.90 5.23

-3.19 -7.05

-10.51 -7.47

-2.47 -6.62

2.28 3.90

-10.87 -4.26

-3.32 -9.49

-0.97 -11.01

-1.89 -9.06

-9.55 -4.44

-2.56 -9.80

-2.04 -6.35

-1.28 -6.12

-9.11 -5.57

3.90 4.18

5.12 3.18

3.88 5.06

3.77 5.94

-3.52 -8.83

-10.22 -4.76

3.40 4.35

-2.32 -9.83

3.68 3.89

-2.50 -5.58

-2.84 -5.88

-0.92 -6.82

4.36 5.25

-1.74 -6.42

-2.16 -9.87

4.75 6.17

-1.81 -8.81

0.09 -4.85

-2.35 -6.31

-1.60 -4.79

3.32 6.44

-1.79 -10.27

4.30 4.94

-3.02 -8.98

-9.33 -3.47

-10.80 -6.86

-1.31 -9.07

-3.54 -9.18

-9.78 -3.64

-10.23 -3.64

-9.75 -4.74

-2.73 -4.64

-3.47 -10.14

-2.48 -6.13

-9.83 -5.46

3.47 3.89

2.89 4.35

-1.94 -11.09

-2.46 -10.73

-3.41 -11.73

-2.69 -3.58

-9.28 -4.63

2.97 5.61

-2.97 -7.02

2.84 5.44

-1.95 -6.65

3.48 4.12

-11.35 -5.19

-2.04 -5.70

-10.18 -2.64

-1.23 -5.33

-9.61 -4.01

-1.69 -9.11

-2.80 -5.18

-2.64 -9.91

2.28 3.81

-0.62 -10.83

-11.87 -6.47

1.89 4.08

-9.73 -4.09

-8.04 -5.15

-1.86 -3.94

-1.77 -9.00

-1.92 -5.44

-0.49 -10.30

-8.64 -3.87

-2.75 -4.86

-3.41 -9.61

-1.38 -6.39

-1.80 -10.13

2.35 3.38

-2.84 -6.35

-3.24 -8.63

1.79 4.24

-1.80 -8.96

4.21 3.05

1.21 4.03

-7.27 -4.88

5.47 3.83

-10.94 -3.79

-8.24 -5.28

-9.84 -4.09

-10.96 -4.17

3.58 3.05

-3.62 -9.36

3.34 5.15

-3.72 -6.40

-4.72 -10.36

-1.23 -10.76

3.26 4.11

2.44 3.48

-2.30 -5.72

-1.28 -4.98

-2.72 -10.64

-3.31 -8.48

-2.06 -5.43

3.23 5.63

-2.34 -9.38

-3.04 -3.78

-2.02 -8.80

3.84 3.96

3.36 5.22

-0.37 -4.50

3.63 4.72

-1.75 -5.05

-1.52 -9.81

-3.17 -11.35

3.24 4.16

-0.07 -5.73

5.00 3.81

-2.16 -3.53

-1.82 -5.48

1.71 4.82

3.14 3.44

-1.02 -4.27

-10.75 -4.83

-2.05 -6.13

-2.50 -5.13

-1.89 -9.99

-8.13 -3.59

-2.55 -11.07

3.34 2.95

-9.53 -5.41

2.51 3.00

-2.14 -5.73

3.88 4.31

-10.92 -5.66

2.74 3.88

-3.77 -7.02

-9.57 -5.43

-0.32 -3.97

4.14 3.09

-2.46 -9.09

-2.48 -10.22

-1.46 -6.03

-10.82 -4.11

-1.49 -9.82

-2.79 -5.45

-10.72 -3.31

-0.99 -5.93

-1.82 -5.84

-2.31 -5.95

1.59 6.65

-0.30 -5.30

3.71 4.79

-9.82 -4.27

-10.57 -5.10

3.58 5.60

2.26 5.72

-2.26 -9.28

-9.70 -4.17

-0.55 -5.95

3.20 4.81

-9.89 -3.77

-10.17 -4.11

-1.23 -9.91

-0.76 -5.65

2.06 5.04

-3.08 -10.97

-9.26 -5.37

-1.67 -9.72

4.00 3.78

-1.75 -4.54

4.71 3.59

2.50 3.68

-2.18 -4.79

-10.68 -6.11

-1.74 -4.42

-3.73 -9.72

-1.65 -6.16

-11.10 -5.65

-0.53 -6.12

-0.52 -3.77

-7.61 -6.34

-3.08 -8.21

-2.39 -4.58

-10.05 -3.62

-10.18 -5.81

-1.46 -9.88

-1.44 -9.19

-1.43 -6.01

-1.49 -4.61

-1.43 -9.25

-10.48 -2.26

4.03 3.64

-3.73 -3.70

-0.88 -5.40

-2.43 -5.66

-3.05 -10.49

-10.22 -4.45

3.32 5.23

-0.45 -5.73

-1.76 -6.03

2.68 4.04

-10.38 -6.25

3.66 4.20

3.54 3.24

4.17 5.82

-2.96 -7.35

-9.68 -2.87

-1.96 -4.15

-2.05 -6.18

4.71 5.94

3.39 5.84

-8.11 -4.22

-10.21 -3.78

3.98 5.67

-0.65 -8.37

-9.89 -4.42

-9.69 -3.76

3.12 2.72

-1.08 -9.31

-2.45 -8.55

3.38 4.64

-10.56 -5.24

-1.81 -9.77

-9.98 -5.39

-0.81 -6.41

2.49 4.67

-2.76 -4.18

1.14 5.87

-1.64 -8.67

4.08 5.62

-3.43 -8.92

-1.50 -6.12

-9.02 -5.61

4.09 4.63

3.70 4.51

4.01 3.64

3.93 5.50

-8.71 -5.91

-9.09 -2.61

-2.07 -9.15

-2.22 -5.57

-4.62 -8.70

0.73 -6.52

-3.13 -4.23

-7.72 -4.67

4.51 3.67

-9.94 -2.69

3.48 4.41

-0.85 -5.67

-9.68 -3.38

-8.84 -2.73

-1.88 -6.10

-1.60 -4.33

-10.22 -3.92

-2.30 -9.03

3.75 4.86

-10.14 -4.27

-1.87 -8.64

-9.81 -4.88

-3.54 -8.05

3.35 2.70

-3.15 -9.11

-10.55 -4.47

-2.10 -3.37

-1.30 -6.44

-3.09 -8.55

-1.34 -5.31

-1.44 -7.35

-1.99 -4.06

-9.98 -5.71

2.27 4.53

-2.24 -6.82

-10.25 -4.72

-1.18 -10.56

-2.04 -12.24

2.78 4.21

2.69 5.06

-1.42 -6.46

-2.87 -4.82

2.82 6.33

-10.11 -5.02

-10.12 -5.46

-2.10 -10.11

4.30 4.16

-2.43 -6.50

-1.03 -6.57

3.94 6.18

-0.22 -5.05

-9.45 -3.14

-3.63 -10.01

-1.68 -5.77

-4.09 -6.54

1.78 5.65

-9.65 -4.55

-1.76 -9.24

-3.58 -10.31

-0.74 -6.66

-2.76 -10.02

3.81 5.97

-1.16 -7.02

-0.91 -8.24

-2.41 -6.94

-3.16 -8.57

3.31 5.69

-3.01 -4.48

-2.75 -7.85

-1.66 -10.36

-3.88 -10.15

-4.12 -8.82

-7.93 -5.75

-2.33 -4.38

-8.16 -4.72

3.68 5.23

-10.51 -5.04

-3.08 -5.07

0.24 -5.28

-2.04 -9.57

-9.46 -4.16

-9.75 -5.56

-2.68 -9.41

2.84 3.71

-2.30 -8.70

-8.26 -3.55

-3.35 -8.66

-1.44 -7.29

-1.57 -6.65

-1.74 -9.34

-1.93 -5.58

-2.73 -8.45

3.03 4.18

-3.10 -12.20

2.22 4.35

-1.75 -5.27

-1.85 -5.09

-2.05 -9.69

2.76 5.39

-9.14 -4.90

-2.48 -6.74

-10.45 -3.06

-1.62 -4.68

1.50 6.46

-10.02 -5.61

2.75 4.28

-3.17 -9.60

2.79 5.17

-2.30 -10.64

2.50 4.33

-9.00 -4.61

-10.97 -4.31

-9.92 -4.49

-2.73 -4.80

3.15 5.71

3.48 5.83

-9.72 -4.56

-10.33 -4.60

-1.35 -9.40

3.06 3.34

-2.98 -10.70

-11.12 -6.42

-0.48 -4.43

-4.78 -9.72

-1.99 -5.85

-3.14 -4.59

-1.99 -10.86

-1.97 -5.31

5.05 5.16

-2.38 -10.68

-10.80 -5.40

3.50 3.67

-2.16 -8.03

-9.04 -3.47

-3.28 -8.71

-2.95 -5.89

-2.11 -6.11

-3.09 -10.20

-9.57 -5.67

3.12 3.16

-9.02 -4.04

-2.79 -7.18

-9.25 -6.57

-4.07 -6.92

4.22 6.18

2.46 4.39

-2.67 -5.78

3.55 3.63

-11.24 -3.61

-2.88 -4.73

3.63 5.51

-1.87 -7.22

-10.14 -4.71

-8.41 -4.94

2.79 4.09

2.73 3.05

3.48 4.99

-1.16 -5.08

-9.01 -3.10

-3.10 -9.41

-8.22 -4.50

2.64 3.69

-9.34 -5.88

-8.11 -5.13

-1.12 -4.13

-2.43 -10.87

-3.48 -5.82

-2.28 -6.37

-2.75 -8.18

-9.92 -3.70

-2.54 -11.31

-1.52 -7.37

2.87 4.21

-9.42 -5.31

-2.68 -4.76

1.40 3.99

3.18 3.99

-2.53 -10.88

-2.12 -10.32

-1.22 -9.38

3.87 4.25

-3.14 -9.51

2.77 4.18

-3.09 -9.23

-2.44 -5.48

3.01 4.44

5.36 5.71

3.69 4.37

-8.71 -5.12

-8.52 -3.44

-1.88 -5.43

-1.03 -4.78

-0.81 -9.68

-9.77 -4.57

-10.86 -2.88

-12.05 -5.51

-9.19 -5.09

4.31 3.16

-1.96 -6.40

-2.27 -8.65

-9.14 -4.46

-2.49 -4.91

-0.92 -5.97

-2.85 -9.69

2.81 6.61

3.82 5.77

1.93 3.54

-11.50 -5.62

-3.63 -9.93

-2.20 -8.18

-10.73 -4.75

-8.29 -2.92

-10.87 -2.28

-2.52 -5.83

-3.78 -10.28

4.46 4.54

3.67 4.68

4.55 4.40

-2.00 -3.47

2.46 4.75

2.49 3.99

-10.01 -3.68

3.68 2.77

-1.30 -6.69

-2.89 -5.78

-2.74 -7.66

2.50 4.83

-3.42 -9.62

4.41 6.85

-1.49 -8.82

-8.36 -2.58

3.47 1.66

-2.39 -5.48

-9.00 -4.41

-2.65 -6.27

-10.05 -3.35

-2.38 -5.28

-0.88 -9.68

4.45 3.27

3.88 5.08

-2.05 -9.73

-1.95 -4.32

-2.52 -7.40

-2.17 -9.40

-9.70 -6.20

-2.93 -8.20

-2.59 -9.97

-4.06 -9.74

3.30 4.16

-8.93 -4.09

-2.41 -8.55

-2.93 -7.37

-11.00 -6.94

-2.45 -9.26

-9.85 -5.98

2.84 4.79

1.93 4.61

-2.73 -9.41

-10.09 -4.29

3.51 5.23

-9.05 -3.37

-0.93 -8.42

1.82 6.14

2.45 6.22

-9.66 -3.44

-2.97 -10.14

3.53 3.31

-2.59 -6.69

4.98 2.85

-2.42 -10.45

-0.63 -6.16

-8.62 -4.65

-10.28 -4.50

-2.99 -5.82

-2.04 -9.53

-2.28 -9.13

-10.70 -2.39

-2.16 -6.29

-9.91 -4.59

-1.82 -4.81

4.95 4.58

-2.78 -8.48

3.82 4.42

-1.33 -6.74

4.48 3.68

-0.98 -8.53

-3.04 -8.55

-0.07 -6.09

-2.49 -6.24

-9.85 -4.92

-9.71 -4.73

-9.93 -3.26

-1.44 -5.69

3.75 4.79

-0.19 -4.26

-0.72 -6.08

4.56 3.64

-1.99 -5.49

3.03 3.18

-2.07 -9.96

-3.54 -10.46

-10.00 -3.71

-8.59 -5.85

-2.02 -9.49

-3.29 -10.89

-3.30 -9.22

-1.89 -9.28

-1.30 -9.39

-1.82 -7.95

-0.24 -4.32

-10.41 -2.52

3.10 3.93

-8.50 -4.99

-2.66 -10.05

-4.59 -8.49

-1.14 -5.53

-10.29 -6.04

-2.93 -6.71

-4.49 -8.17

-11.39 -6.24

-3.52 -4.67

-9.99 -6.00

-9.02 -5.28

-9.73 -7.61

-1.63 -8.95

-1.72 -4.86

-2.46 -9.74

-2.22 -5.26

-9.53 -5.55

-3.40 -10.47

-8.60 -4.60

-1.94 -9.28

-9.82 -4.58

-0.76 -8.95

-8.91 -5.82

-2.01 -6.36

-9.36 -4.35

-1.94 -11.03

-10.32 -5.44

-7.94 -3.88

2.40 5.72

-9.52 -5.20

-1.54 -6.91

-0.69 -6.26

-8.21 -3.71

4.01 4.21

-9.87 -4.96

-1.74 -4.96

5.31 4.28

-2.90 -9.30

-9.69 -3.54

-9.24 -4.21

-3.38 -8.76

3.70 4.12

2.79 4.65

-9.22 -4.89

-1.83 -5.76

-2.82 -9.01

-2.86 -10.22

2.43 4.46

-2.90 -6.44

-2.57 -5.88

-2.83 -7.71

-1.66 -6.33

3.62 5.29

-3.94 -9.85

-10.16 -3.47

-3.32 -6.13

-11.94 -2.71

1.87 3.90

-8.81 -4.82

-1.80 -4.75

2.74 3.91

2.23 5.02

4.43 5.31

-11.13 -5.32

-1.31 -11.30

3.68 5.30

-3.49 -4.45

3.63 5.81

-1.96 -8.25

week 4: Let us assume we developed a machine learning model to predict which patients on dialysis will be admitted to the hospital in the next week. Given 100 patients, we have the following break-down:

• True Positives: people that are hospitalized that you predict will be hospitalized

• True Negatives: people that are NOT hospitalized that you predict will NOT be hospitalized

• False Positives: people that are NOT hospitalized that you predict will be hospitalized

• False Negatives: people that are hospitalized that you predict will NOT be hospitalized

Calculate the performance metrics in the table below:

Task 2: Try K-NN classifier for dataset provided in for different numbers of neighbours (K = 3 and K = 7). Which K provides better results? Justify your answer by using AUC of ROC curve. Also provide the relevant performance metrics such sensitivity, etc.

Task 3: The scrip also retunes a value called ‘f1_score’. Do some research to understand what this measure is. Repeat task-2 and this time justify your answer using f1_score. Do you arrive at the same conclusion?

Week 5:

Task 1

Try Random Forest Classifier for the Iris dataset example, and when creating decision trees from the bootstrapped dataset, use different number of features:

• a subset of 2 features

• a subset of 3 features

• a subset of 4 features

And compare the accuracy of your Random Forest Classifier. Which one is better? Discuss your observations and justify your answer.

What is the largest number of features you may have?

Task 2: You have been given a binary classification problem (positive/negative) where the original dataset contains 29 positive and 35 negative samples. We have 2 features of A1 and A2 which can be used for splitting the data. We would like to build a decision tree and figure below provides the resulting splits for each feature. Which feature would you use to split the data? A1 or A2? Justify your answer.

Tip: use information gain.

Week 6:

Task 1: data perception:

0.47 3.87 0.00

2.84 3.33 0.00

0.61 2.51 0.00

3.82 1.65 1.00

1.28 0.63 1.00

0.99 5.87 0.00

1.05 -0.10 1.00

0.91 4.20 0.00

0.88 3.64 0.00

0.91 -0.41 1.00

0.89 4.50 0.00

3.09 1.38 1.00

1.28 1.78 1.00

2.61 -0.17 1.00

-0.97 3.39 0.00

-0.07 2.88 0.00

4.51 0.69 1.00

0.51 1.43 1.00

3.17 0.38 1.00

1.73 0.89 1.00

1.42 6.00 0.00

-0.36 2.34 0.00

1.04 0.30 1.00

1.29 4.82 0.00

0.35 3.82 0.00

1.10 1.91 1.00

0.16 2.90 0.00

0.23 3.48 0.00

0.84 4.01 0.00

1.16 3.92 0.00

2.73 2.20 1.00

1.71 0.64 1.00

0.38 4.07 0.00

0.98 4.83 0.00

1.73 5.17 0.00

-0.30 3.72 0.00

0.78 4.40 0.00

3.34 0.01 1.00

0.58 4.67 0.00

2.28 1.10 1.00

2.98 0.77 1.00

0.26 3.49 0.00

0.51 4.79 0.00

3.45 -0.74 1.00

2.25 -0.26 1.00

1.95 -0.15 1.00

2.66 -0.73 1.00

1.30 1.20 1.00

0.16 2.58 0.00

2.27 -0.34 1.00

0.86 0.40 1.00

2.20 -0.08 1.00

2.01 1.14 1.00

2.10 4.80 0.00

3.45 1.94 1.00

-0.96 4.49 0.00

1.85 4.58 0.00

2.19 -0.51 1.00

3.62 -0.04 1.00

1.53 0.79 1.00

1.22 3.93 0.00

1.91 4.64 0.00

2.10 2.76 1.00

1.50 4.13 0.00

1.00 0.34 1.00

1.14 4.40 0.00

2.10 0.57 1.00

0.30 5.60 0.00

2.21 1.94 1.00

2.91 0.06 1.00

0.68 -0.17 1.00

1.20 4.63 0.00

2.12 0.91 1.00

2.01 0.29 1.00

2.08 1.51 1.00

1.27 5.13 0.00

2.47 4.10 0.00

-1.68 4.91 0.00

1.31 5.25 0.00

0.84 5.38 0.00

0.34 3.94 0.00

0.54 4.02 0.00

2.01 3.31 0.00

2.72 5.30 0.00

2.52 2.61 1.00

2.15 1.28 1.00

1.62 2.73 0.00

2.20 2.73 1.00

2.55 1.38 1.00

-0.47 3.09 0.00

1.75 0.24 1.00

3.14 5.64 0.00

1.01 4.23 0.00

1.70 4.33 0.00

1.75 5.13 0.00

2.12 0.43 1.00

0.71 5.11 0.00

0.33 2.70 1.00

0.24 5.85 0.00

0.57 -0.41 1.00

-1.28 3.28 0.00

2.09 1.41 1.00

1.83 3.65 0.00

-0.09 5.36 0.00

-0.08 5.12 0.00

-0.98 3.64 0.00

0.55 3.47 0.00

3.10 1.50 1.00

1.62 2.69 0.00

1.65 0.10 1.00

-0.85 4.61 0.00

1.93 0.63 1.00

0.23 0.20 1.00

1.74 4.66 0.00

0.54 6.15 0.00

3.33 0.19 1.00

1.27 5.63 0.00

1.25 3.41 0.00

2.37 1.20 1.00

4.74 0.70 1.00

1.77 -0.26 1.00

0.85 5.44 0.00

1.02 4.12 0.00

2.38 3.89 0.00

1.91 5.72 0.00

0.57 -0.37 1.00

-0.79 4.66 0.00

5.23 1.09 1.00

1.31 6.53 0.00

1.26 4.21 0.00

2.45 2.49 1.00

0.61 4.06 0.00

1.93 4.39 0.00

-0.36 2.96 0.00

4.38 1.01 1.00

-0.72 2.05 1.00

2.41 0.42 1.00

1.96 -0.15 1.00

2.93 -0.93 1.00

0.42 3.83 0.00

0.04 3.04 0.00

-0.34 3.84 0.00

-0.06 2.30 1.00

2.07 3.10 1.00

2.65 0.64 1.00

-0.07 5.51 0.00

3.10 1.06 1.00

2.83 1.33 1.00

2.44 2.07 1.00

1.76 3.84 0.00

1.72 3.11 0.00

1.92 4.15 0.00

2.52 0.50 1.00

2.34 1.31 1.00

2.62 4.47 0.00

0.21 4.84 0.00

0.21 4.86 0.00

2.37 0.76 1.00

0.26 -0.17 1.00

1.42 4.48 0.00

2.47 2.23 0.00

-0.15 3.57 0.00

1.60 2.70 0.00

-0.18 5.08 0.00

1.53 1.94 1.00

4.68 0.15 1.00

0.87 5.32 0.00

0.53 3.65 0.00

-0.10 2.22 1.00

1.65 3.60 0.00

1.85 4.19 0.00

0.39 0.77 1.00

2.66 0.30 1.00

2.02 -0.63 1.00

0.79 3.91 0.00

1.75 0.46 1.00

-1.39 5.17 0.00

-0.61 4.91 0.00

0.31 4.63 0.00

0.84 5.44 0.00

1.72 0.18 1.00

0.86 3.62 0.00

1.92 4.04 0.00

0.04 1.49 1.00

0.70 3.59 0.00

3.96 0.88 1.00

0.92 1.89 1.00

2.99 -0.49 1.00

0.41 4.57 0.00

0.71 2.16 1.00

0.08 5.62 0.00

1.72 2.93 1.00

3.67 0.07 1.00

0.67 0.36 1.00

0.58 3.14 0.00

1.08 0.31 1.00

2.46 0.89 1.00

2.70 1.49 1.00

3.66 0.71 1.00

1.50 3.73 0.00

2.47 -0.34 1.00

2.99 1.58 1.00

1.09 3.92 0.00

0.57 5.53 0.00

2.72 -1.64 1.00

3.36 0.87 1.00

2.77 0.65 1.00

3.02 0.48 1.00

2.86 2.96 0.00

-0.24 4.00 0.00

0.45 3.12 0.00

2.71 4.99 0.00

-1.03 4.68 0.00

1.40 0.98 1.00

0.96 4.68 0.00

1.75 5.33 0.00

0.77 5.18 0.00

2.10 -0.06 1.00

0.92 4.04 0.00

3.46 1.06 1.00

2.97 3.11 1.00

0.87 2.64 0.00

1.67 4.14 0.00

0.63 3.51 0.00

-0.28 5.08 0.00

-1.58 4.96 0.00

1.65 1.85 1.00

1.80 0.55 1.00

3.35 1.51 1.00

2.88 1.43 1.00

1.77 -1.10 1.00

0.27 5.25 0.00

1.59 1.77 1.00

2.06 3.67 0.00

1.41 1.07 1.00

2.30 4.20 0.00

2.07 -0.95 1.00

0.69 0.88 1.00

0.48 4.33 0.00

0.44 0.39 1.00

1.09 1.37 1.00

1.33 5.01 0.00

1.65 3.92 0.00

1.08 2.32 1.00

0.38 5.43 0.00

2.20 4.37 0.00

2.14 0.08 1.00

1.58 1.17 1.00

0.57 5.03 0.00

2.30 1.06 1.00

1.24 2.70 1.00

2.14 1.84 1.00

1.07 4.89 0.00

-0.45 6.30 0.00

0.59 4.00 0.00

0.29 4.19 0.00

1.01 0.04 1.00

1.40 4.98 0.00

-0.71 4.19 0.00

1.26 -0.01 1.00

1.87 1.79 1.00

1.38 1.53 0.00

2.65 -0.09 1.00

3.06 1.49 1.00

1.58 0.37 1.00

0.99 5.02 0.00

2.04 3.85 0.00

1.06 0.16 1.00

2.50 1.12 1.00

0.37 1.70 1.00

1.70 1.44 1.00

0.74 2.31 1.00

1.02 2.74 0.00

3.48 1.35 1.00

0.85 4.40 0.00

2.93 1.53 1.00

2.39 0.75 1.00

3.46 1.23 1.00

-0.87 3.83 0.00

1.43 4.40 0.00

1.67 0.84 1.00

2.93 4.69 0.00

1.43 0.51 1.00

2.79 0.83 1.00

0.31 5.99 0.00

1.62 2.05 1.00

0.62 2.69 0.00

2.25 1.00 1.00

2.62 1.04 1.00

2.62 0.56 1.00

0.76 4.75 0.00

1.22 3.42 0.00

0.50 4.92 0.00

3.04 0.81 1.00

2.99 4.26 0.00

3.02 0.17 1.00

2.81 1.46 1.00

2.94 1.93 1.00

1.06 -0.11 1.00

0.85 1.31 1.00

2.07 4.07 0.00

3.28 3.24 0.00

2.39 5.09 0.00

1.74 4.43 0.00

-0.29 5.27 0.00

0.02 3.96 0.00

2.59 0.76 1.00

1.58 5.20 0.00

3.20 -0.01 1.00

0.09 2.32 0.00

2.04 0.41 1.00

1.18 0.67 1.00

3.40 0.16 1.00

0.63 2.82 1.00

1.55 4.10 0.00

0.47 3.14 1.00

-0.37 3.54 0.00

2.48 1.45 1.00

2.35 3.79 0.00

0.03 3.89 0.00

2.47 0.39 1.00

2.30 2.42 1.00

-0.38 4.26 0.00

1.89 0.76 1.00

0.73 5.82 0.00

2.09 0.86 1.00

2.93 0.02 1.00

1.90 1.95 1.00

2.27 2.44 1.00

1.04 4.09 0.00

0.28 4.15 0.00

2.31 1.95 1.00

-0.33 5.96 0.00

1.28 2.93 0.00

0.06 5.42 0.00

2.14 2.32 1.00

0.32 3.79 0.00

1.20 3.29 0.00

0.96 5.13 0.00

2.52 0.80 1.00

3.32 3.02 0.00

2.05 1.74 0.00

0.94 0.86 1.00

1.19 3.10 0.00

0.57 3.44 0.00

0.76 3.22 0.00

-0.20 6.25 0.00

1.71 0.92 1.00

1.52 -0.06 1.00

2.88 0.60 1.00

1.89 0.81 1.00

0.68 3.54 0.00

0.87 4.71 0.00

1.67 5.61 0.00

0.07 3.88 0.00

1.59 2.96 0.00

1.06 2.94 1.00

1.60 0.98 1.00

3.57 3.90 0.00

2.30 2.03 1.00

3.86 1.33 1.00

1.67 5.00 0.00

0.36 1.63 1.00

0.77 4.19 0.00

2.26 1.43 1.00

1.02 -0.53 1.00

2.47 0.86 1.00

1.65 0.58 1.00

-1.04 3.76 0.00

2.09 1.52 1.00

0.13 3.98 0.00

0.32 1.49 1.00

2.13 5.38 0.00

0.12 3.40 0.00

2.12 1.68 1.00

2.16 3.67 0.00

1.57 0.62 1.00

2.06 0.13 1.00

2.36 4.00 0.00

2.22 2.46 1.00

1.85 2.47 1.00

3.11 -0.12 1.00

0.87 3.32 0.00

0.43 0.76 1.00

2.48 1.14 1.00

0.70 4.04 0.00

2.21 0.68 1.00

2.40 4.70 0.00

0.06 4.56 0.00

3.37 0.57 1.00

3.16 1.30 1.00

0.83 3.92 0.00

0.42 0.16 1.00

3.46 1.04 1.00

2.26 1.21 1.00

1.27 1.52 1.00

0.52 4.32 0.00

0.25 2.92 0.00

2.21 5.51 0.00

1.89 1.28 1.00

1.60 2.32 1.00

0.82 6.56 0.00

2.49 0.30 1.00

1.33 -0.22 1.00

1.61 -0.85 1.00

2.44 5.16 0.00

-1.05 6.37 0.00

-0.17 3.95 0.00

0.58 1.26 0.00

1.34 4.49 0.00

1.10 -0.45 1.00

1.31 0.29 1.00

1.47 0.45 1.00

2.07 0.30 1.00

1.22 -0.05 1.00

-0.72 4.69 0.00

0.57 2.39 1.00

1.91 -0.33 1.00

0.96 4.46 0.00

0.21 2.87 0.00

1.16 -1.07 1.00

2.76 -0.60 1.00

1.65 0.43 1.00

2.59 1.22 1.00

1.69 -0.06 1.00

1.55 4.65 0.00

-0.75 -0.29 1.00

1.75 3.12 0.00

1.02 6.64 0.00

2.51 1.18 1.00

1.47 4.28 0.00

1.22 1.89 1.00

1.82 0.65 1.00

2.35 1.81 1.00

4.20 0.81 1.00

1.44 4.58 0.00

0.92 3.99 0.00

1.10 4.71 0.00

2.10 3.22 0.00

3.25 2.85 0.00

1.89 1.67 1.00

0.95 0.87 1.00

-0.45 3.81 0.00

4.23 1.56 1.00

3.11 1.85 1.00

1.90 0.07 1.00

2.86 -0.30 1.00

1.57 3.94 0.00

2.31 0.49 1.00

-1.26 4.71 0.00

1.78 4.38 0.00

0.02 3.51 0.00

1.63 0.26 1.00

0.14 3.71 0.00

3.08 1.61 1.00

3.06 1.43 1.00

3.05 0.71 1.00

1.91 4.13 0.00

0.93 4.02 0.00

3.01 1.44 1.00

1.35 3.20 0.00

0.54 4.49 0.00

-0.05 3.95 0.00

0.59 4.40 0.00

1.59 5.23 0.00

0.38 5.86 0.00

2.09 0.04 1.00

2.30 3.42 0.00

2.22 -0.05 1.00

0.33 2.08 0.00

-0.16 5.09 0.00

0.19 4.19 0.00

3.31 -1.19 1.00

3.72 1.20 1.00

3.02 1.41 1.00

3.17 -0.67 1.00

2.68 1.79 1.00

0.55 0.62 1.00

3.38 0.73 1.00

0.18 3.77 0.00

1.85 0.22 1.00

3.83 0.50 1.00

2.40 1.56 1.00

-1.39 4.32 0.00

2.93 2.10 1.00

1.82 4.05 0.00

2.75 0.60 1.00

0.16 2.84 0.00

1.20 5.69 0.00

0.61 0.45 1.00

2.06 1.78 1.00

2.03 0.78 1.00

1.84 3.56 0.00

2.90 0.22 1.00

1.26 1.98 0.00

2.07 1.95 1.00

2.96 2.70 1.00

1.26 0.68 1.00

1.20 4.70 0.00

1.45 -0.25 1.00

0.75 3.44 0.00

1.54 4.08 0.00

1.46 -0.62 1.00

-0.20 5.61 0.00

1.44 6.04 0.00

1.40 1.11 1.00

0.16 0.72 1.00

-0.32 5.58 0.00

1.14 4.94 0.00

1.25 3.50 0.00

2.10 1.49 1.00

3.88 0.82 1.00

1.22 1.07 1.00

0.29 5.96 0.00

2.09 0.32 1.00

1.90 4.62 0.00

-0.64 4.09 0.00

2.82 0.48 1.00

1.34 5.60 0.00

1.26 3.31 0.00

1.38 4.11 0.00

0.30 4.34 0.00

3.04 1.66 1.00

3.28 0.70 1.00

3.64 1.55 1.00

1.75 0.54 1.00

0.74 1.44 1.00

0.80 0.93 1.00

1.60 1.27 1.00

0.95 0.87 1.00

0.34 4.98 0.00

2.83 0.61 1.00

0.61 5.24 0.00

2.73 4.17 0.00

0.32 4.48 0.00

-0.01 2.83 0.00

1.13 4.54 0.00

1.03 2.51 0.00

1.04 4.61 0.00

2.60 1.61 1.00

0.42 -0.88 1.00

1.59 0.04 1.00

0.75 3.39 0.00

3.70 -0.65 1.00

0.95 4.73 0.00

2.26 2.06 1.00

1.99 1.18 1.00

2.91 0.09 1.00

0.61 3.36 0.00

1.04 0.98 1.00

2.73 0.95 1.00

0.84 4.71 0.00

0.63 3.72 0.00

0.51 2.10 0.00

2.24 2.60 1.00

3.63 0.10 1.00

3.66 0.34 1.00

0.51 4.09 0.00

2.49 4.86 0.00

0.12 4.33 0.00

2.83 0.77 1.00

1.64 -0.20 1.00

2.02 1.23 1.00

0.60 1.28 1.00

2.07 0.82 1.00

1.79 4.36 0.00

1.01 -0.19 1.00

3.27 -0.51 1.00

2.44 1.91 1.00

0.04 5.32 0.00

0.86 4.61 0.00

0.47 6.72 0.00

3.47 2.06 0.00

1.43 2.47 0.00

1.65 4.71 0.00

0.12 2.76 0.00

1.38 0.33 1.00

2.27 -0.11 1.00

2.50 0.28 1.00

0.43 2.42 0.00

1.71 4.43 0.00

0.07 4.36 0.00

2.87 0.62 1.00

1.88 0.39 1.00

1.29 3.45 0.00

2.09 0.81 1.00

0.67 4.07 0.00

3.40 1.81 1.00

2.08 4.96 0.00

1.24 0.38 1.00

1.71 -0.37 1.00

2.25 1.59 1.00

1.44 0.07 1.00

1.56 2.11 1.00

1.65 -0.57 1.00

0.18 4.54 0.00

1.54 3.02 0.00

0.94 3.14 0.00

0.92 -0.32 1.00

1.80 4.31 0.00

3.41 0.50 1.00

2.94 2.37 1.00

1.33 4.68 0.00

1.79 4.89 0.00

1.13 4.68 0.00

1.01 0.58 1.00

3.49 2.36 1.00

2.51 5.77 0.00

1.68 3.24 0.00

1.20 1.23 1.00

1.05 2.57 1.00

0.95 3.57 0.00

3.67 4.23 0.00

0.95 5.38 0.00

1.30 -0.30 1.00

1.47 1.23 1.00

4.02 0.70 1.00

2.01 2.26 0.00

-0.12 0.27 1.00

0.46 0.90 1.00

2.50 1.00 1.00

1.91 4.27 0.00

-0.25 5.15 0.00

3.92 1.66 1.00

2.46 2.10 1.00

0.45 -0.48 1.00

1.08 2.24 1.00

1.69 1.51 1.00

1.93 4.15 0.00

-0.32 4.57 0.00

-0.25 5.27 0.00

0.55 4.41 0.00

0.03 4.55 0.00

1.24 -0.55 1.00

4.58 2.67 1.00

0.87 4.32 0.00

3.24 4.26 0.00

0.51 2.89 0.00

-0.13 4.36 0.00

1.50 4.39 0.00

3.36 5.25 0.00

4.21 1.37 1.00

2.05 2.14 1.00

-0.94 1.78 1.00

0.29 3.09 0.00

1.49 0.59 1.00

1.44 3.93 0.00

1.90 0.96 1.00

2.28 2.51 1.00

0.48 6.23 0.00

3.07 1.60 1.00

1.66 1.68 1.00

1.64 3.84 0.00

2.35 0.94 1.00

1.70 3.44 1.00

1.98 -0.40 1.00

0.62 2.93 0.00

0.48 4.23 0.00

1.73 0.19 1.00

-0.65 4.77 0.00

2.66 -0.15 1.00

0.91 0.94 1.00

1.85 -0.82 1.00

0.67 2.63 0.00

2.21 0.64 1.00

3.20 1.24 1.00

0.52 4.57 0.00

0.01 4.62 0.00

1.34 4.16 0.00

1.91 0.99 1.00

0.12 6.13 0.00

2.02 -0.05 1.00

1.42 4.64 0.00

1.45 4.45 0.00

1.22 -0.47 1.00

1.32 6.32 0.00

0.03 4.54 0.00

0.71 4.12 0.00

1.97 0.33 1.00

2.28 0.81 1.00

1.03 4.80 0.00

2.68 0.27 1.00

0.80 0.31 1.00

-0.38 2.01 1.00

2.08 5.60 0.00

2.16 1.44 1.00

1.32 -0.74 1.00

2.99 4.00 0.00

0.73 3.43 0.00

1.47 5.35 0.00

0.59 3.86 0.00

1.84 3.50 0.00

2.55 0.16 1.00

2.56 1.26 1.00

0.99 6.09 0.00

1.83 5.44 0.00

2.74 0.95 1.00

1.34 5.78 0.00

0.41 2.30 1.00

-0.17 3.87 0.00

1.17 5.39 0.00

0.90 4.56 0.00

2.92 1.08 1.00

0.93 4.52 0.00

-0.66 2.74 0.00

1.33 4.92 0.00

2.50 6.02 0.00

1.05 3.23 0.00

2.25 1.78 1.00

1.07 -0.00 1.00

0.60 3.08 0.00

1.99 2.16 1.00

2.16 4.62 0.00

3.64 0.25 1.00

0.21 3.42 0.00

0.28 4.01 0.00

2.12 0.63 1.00

0.44 5.39 0.00

2.98 1.46 1.00

1.45 4.62 0.00

1.12 5.76 0.00

1.99 0.19 1.00

0.17 3.19 0.00

0.66 3.46 0.00

1.30 1.04 1.00

0.66 4.36 0.00

-0.02 2.76 0.00

2.25 2.89 1.00

1.01 5.07 0.00

1.38 3.62 0.00

1.67 4.31 0.00

1.92 4.71 0.00

1.76 -0.84 1.00

0.05 4.13 0.00

0.32 3.91 0.00

3.74 -0.75 1.00

3.69 1.28 1.00

1.25 5.74 0.00

2.03 0.57 1.00

0.25 1.31 1.00

1.75 2.64 0.00

2.87 1.14 1.00

0.22 4.25 0.00

-0.43 3.71 0.00

0.43 4.72 0.00

2.57 0.57 1.00

0.44 4.95 0.00

2.56 0.04 1.00

1.80 5.66 0.00

2.59 1.30 1.00

-0.63 3.42 0.00

-0.53 2.53 0.00

0.25 4.50 0.00

0.27 4.98 0.00

0.63 4.46 0.00

1.93 -0.58 1.00

2.39 0.31 1.00

0.32 1.47 0.00

0.97 4.32 0.00

0.40 1.05 1.00

2.08 0.94 1.00

2.84 5.21 0.00

1.99 3.65 0.00

0.04 4.74 0.00

-0.39 5.17 0.00

2.19 -1.08 1.00

0.67 4.40 0.00

0.19 5.40 0.00

-1.31 4.56 0.00

1.00 4.40 0.00

2.26 2.80 0.00

1.72 0.88 1.00

2.25 2.20 1.00

-0.03 5.99 0.00

1.21 6.44 0.00

0.56 3.56 0.00

1.05 0.08 1.00

1.95 2.27 1.00

1.89 4.62 0.00

0.47 3.49 0.00

1.62 1.47 1.00

1.14 3.54 1.00

1.26 6.05 0.00

1.51 4.55 0.00

2.15 1.09 1.00

1.20 4.75 0.00

2.07 1.22 1.00

1.53 1.07 1.00

1.37 3.21 0.00

0.75 0.09 1.00

0.28 5.84 0.00

1.19 1.55 1.00

2.57 -1.64 1.00

2.86 -0.95 1.00

0.94 6.68 0.00

2.00 3.75 0.00

2.27 0.99 1.00

2.24 4.52 0.00

3.32 0.80 1.00

2.83 1.14 1.00

-0.73 6.25 0.00

0.91 2.99 0.00

2.08 1.08 1.00

-0.06 4.99 0.00

0.92 4.30 0.00

1.36 4.27 0.00

2.66 2.01 1.00

-0.77 3.00 0.00

2.89 1.22 1.00

2.16 0.81 1.00

1.16 5.97 0.00

1.71 2.92 1.00

0.95 0.35 1.00

1.87 5.68 0.00

1.58 1.83 1.00

2.34 3.61 0.00

1.26 2.45 1.00

3.49 1.32 1.00

2.39 1.55 1.00

1.30 5.30 0.00

0.89 5.67 0.00

2.60 -0.92 1.00

0.75 4.00 0.00

1.18 4.25 0.00

1.92 1.56 0.00

1.51 4.73 0.00

2.34 0.59 1.00

1.25 -0.21 1.00

1.99 -0.54 1.00

2.15 2.47 1.00

1.18 5.28 0.00

2.29 2.30 1.00

-0.49 3.62 0.00

0.44 4.33 0.00

-0.20 3.16 0.00

2.49 1.44 1.00

3.32 1.40 1.00

1.51 -0.20 1.00

2.17 0.24 1.00

2.79 0.52 1.00

1.29 -0.55 1.00

2.79 2.00 1.00

1.49 1.37 1.00

0.26 0.10 1.00

-0.67 3.90 0.00

0.79 3.50 0.00

0.47 3.25 0.00

1.27 0.90 1.00

-0.57 4.72 0.00

2.60 3.19 1.00

0.32 3.78 0.00

2.07 0.78 1.00

-0.18 3.99 0.00

1.99 0.45 1.00

2.30 4.51 0.00

1.54 1.67 1.00

1.01 2.65 0.00

0.98 0.78 1.00

1.43 3.34 0.00

0.52 -0.81 1.00

1.20 1.03 1.00

0.47 1.74 1.00

2.47 4.83 0.00

1.13 -0.55 1.00

0.23 4.34 0.00

2.98 1.36 1.00

0.61 5.37 0.00

3.15 0.76 1.00

1.57 0.90 1.00

0.04 5.55 0.00

0.17 3.84 0.00

-1.12 4.43 0.00

2.90 5.78 0.00

2.13 4.48 0.00

1.43 1.89 1.00

1.41 1.05 1.00

-0.21 3.80 0.00

-0.04 4.23 0.00

0.61 -0.69 1.00

0.84 1.18 1.00

2.30 3.34 0.00

-0.78 4.75 0.00

3.54 -1.23 1.00

-1.61 3.15 0.00

0.68 1.40 1.00

1.59 0.04 1.00

1.91 4.89 0.00

-0.47 5.10 0.00

-0.51 4.74 0.00

0.38 3.19 0.00

2.11 1.20 1.00

1.05 1.00 1.00

1.12 3.98 0.00

0.08 4.69 0.00

1.53 5.20 0.00

3.57 -0.27 1.00

0.17 3.61 0.00

1.03 5.17 0.00

2.08 3.13 1.00

2.51 1.86 1.00

0.34 3.91 0.00

2.46 2.83 1.00

0.71 3.18 0.00

2.83 4.09 0.00

1.13 2.31 1.00

2.57 4.05 0.00

2.16 4.12 0.00

0.61 4.46 0.00

2.54 -0.07 1.00

2.21 -1.06 1.00

0.11 3.72 0.00

3.72 -0.52 1.00

0.92 3.91 0.00

0.30 3.94 0.00

1.27 4.72 0.00

0.46 3.32 0.00

0.91 6.02 0.00

1.35 4.45 0.00

0.52 4.71 0.00

0.06 4.50 0.00

-0.19 5.20 0.00

1.16 1.45 1.00

1.94 5.63 0.00

1.78 -0.42 1.00

1.84 1.65 0.00

2.46 -0.88 1.00

2.94 0.63 1.00

2.16 1.03 1.00

1.33 4.15 0.00

0.59 3.79 0.00

1.91 3.78 0.00

3.02 1.12 1.00

2.12 3.07 0.00

0.47 3.12 0.00

1.69 1.68 1.00

1.41 -0.24 1.00

2.61 0.23 1.00

2.83 0.12 1.00

1.78 2.02 1.00

3.09 2.69 0.00

1.15 3.90 0.00

2.01 0.98 1.00

1.67 5.10 0.00

2.01 4.23 0.00

3.51 0.95 1.00

2.34 1.88 1.00

1.22 -0.04 1.00

1.27 1.17 1.00

0.12 6.21 0.00

2.27 0.98 1.00

2.97 0.84 1.00

2.22 2.23 1.00

2.33 0.19 1.00

4.54 2.59 1.00

1.26 4.91 0.00

0.69 2.84 1.00

3.77 0.11 1.00

-0.56 4.37 0.00

2.51 0.54 1.00

1.34 0.00 1.00

2.81 1.96 1.00

2.58 0.36 1.00

0.32 5.27 0.00

2.82 0.63 1.00

0.63 2.95 0.00

-0.70 3.41 0.00

2.28 -0.78 1.00

1.73 3.76 0.00

2.32 1.42 1.00

-0.66 4.24 0.00

1.89 2.69 1.00

1.95 6.44 0.00

3.59 0.99 1.00

3.80 0.60 1.00

1.20 2.15 1.00

2.31 0.51 1.00

2.89 1.39 1.00

1.64 0.49 1.00

0.33 4.78 0.00

1.87 1.72 1.00

1.52 4.74 0.00

1.46 7.06 0.00

1.28 2.63 1.00

2.14 3.09 1.00

-0.07 -0.94 1.00

0.45 2.36 1.00

2.27 1.47 1.00

1.70 3.20 0.00

0.50 0.39 1.00

-0.06 3.87 0.00

2.49 0.75 1.00

1.48 4.19 0.00

2.30 1.51 1.00

0.38 4.25 0.00

2.46 6.20 0.00

2.17 1.55 1.00

1.17 2.52 0.00

2.08 0.47 1.00

1.44 2.77 0.00

1.47 4.19 0.00

This is a simple data set that contains 1000 entries with 2 features and corresponding class labels (0 or 1) for each entry.

Snapshot of data (first two columns are features, and last column is the class label).

Apply the Perceptron algorithm to obtain a linear classifier and plot the results.

• Is the data linearly separable? Justify your answer.

• If linearly inseparable, what is the percentage of misclassified points using your linear classifier??

Use the Python script for this task, but it needs to be modified. You can load the data as follows:

Tip: compute the total number of misclassified points (classified as 0 where it should be 1, or classified as 1 where it should be zero), and then divide by total number of points (i.e. 1000).

Week 7:

data SMVtxt

0.47 3.87 0.00

2.84 3.33 0.00

0.61 2.51 0.00

3.82 1.65 1.00

1.28 0.63 1.00

0.99 5.87 0.00

1.05 -0.10 1.00

0.91 4.20 0.00

0.88 3.64 0.00

0.91 -0.41 1.00

0.89 4.50 0.00

3.09 1.38 1.00

1.28 1.78 1.00

2.61 -0.17 1.00

-0.97 3.39 0.00

-0.07 2.88 0.00

4.51 0.69 1.00

0.51 1.43 1.00

3.17 0.38 1.00

1.73 0.89 1.00

1.42 6.00 0.00

-0.36 2.34 0.00

1.04 0.30 1.00

1.29 4.82 0.00

0.35 3.82 0.00

1.10 1.91 1.00

0.16 2.90 0.00

0.23 3.48 0.00

0.84 4.01 0.00

1.16 3.92 0.00

2.73 2.20 1.00

1.71 0.64 1.00

0.38 4.07 0.00

0.98 4.83 0.00

1.73 5.17 0.00

-0.30 3.72 0.00

0.78 4.40 0.00

3.34 0.01 1.00

0.58 4.67 0.00

2.28 1.10 1.00

2.98 0.77 1.00

0.26 3.49 0.00

0.51 4.79 0.00

3.45 -0.74 1.00

2.25 -0.26 1.00

1.95 -0.15 1.00

2.66 -0.73 1.00

1.30 1.20 1.00

0.16 2.58 0.00

2.27 -0.34 1.00

0.86 0.40 1.00

2.20 -0.08 1.00

2.01 1.14 1.00

2.10 4.80 0.00

3.45 1.94 1.00

-0.96 4.49 0.00

1.85 4.58 0.00

2.19 -0.51 1.00

3.62 -0.04 1.00

1.53 0.79 1.00

1.22 3.93 0.00

1.91 4.64 0.00

2.10 2.76 1.00

1.50 4.13 0.00

1.00 0.34 1.00

1.14 4.40 0.00

2.10 0.57 1.00

0.30 5.60 0.00

2.21 1.94 1.00

2.91 0.06 1.00

0.68 -0.17 1.00

1.20 4.63 0.00

2.12 0.91 1.00

2.01 0.29 1.00

2.08 1.51 1.00

1.27 5.13 0.00

2.47 4.10 0.00

-1.68 4.91 0.00

1.31 5.25 0.00

0.84 5.38 0.00

0.34 3.94 0.00

0.54 4.02 0.00

2.01 3.31 0.00

2.72 5.30 0.00

2.52 2.61 1.00

2.15 1.28 1.00

1.62 2.73 0.00

2.20 2.73 1.00

2.55 1.38 1.00

-0.47 3.09 0.00

1.75 0.24 1.00

3.14 5.64 0.00

1.01 4.23 0.00

1.70 4.33 0.00

1.75 5.13 0.00

2.12 0.43 1.00

0.71 5.11 0.00

0.33 2.70 1.00

0.24 5.85 0.00

0.57 -0.41 1.00

-1.28 3.28 0.00

2.09 1.41 1.00

1.83 3.65 0.00

-0.09 5.36 0.00

-0.08 5.12 0.00

-0.98 3.64 0.00

0.55 3.47 0.00

3.10 1.50 1.00

1.62 2.69 0.00

1.65 0.10 1.00

-0.85 4.61 0.00

1.93 0.63 1.00

0.23 0.20 1.00

1.74 4.66 0.00

0.54 6.15 0.00

3.33 0.19 1.00

1.27 5.63 0.00

1.25 3.41 0.00

2.37 1.20 1.00

4.74 0.70 1.00

1.77 -0.26 1.00

0.85 5.44 0.00

1.02 4.12 0.00

2.38 3.89 0.00

1.91 5.72 0.00

0.57 -0.37 1.00

-0.79 4.66 0.00

5.23 1.09 1.00

1.31 6.53 0.00

1.26 4.21 0.00

2.45 2.49 1.00

0.61 4.06 0.00

1.93 4.39 0.00

-0.36 2.96 0.00

4.38 1.01 1.00

-0.72 2.05 1.00

2.41 0.42 1.00

1.96 -0.15 1.00

2.93 -0.93 1.00

0.42 3.83 0.00

0.04 3.04 0.00

-0.34 3.84 0.00

-0.06 2.30 1.00

2.07 3.10 1.00

2.65 0.64 1.00

-0.07 5.51 0.00

3.10 1.06 1.00

2.83 1.33 1.00

2.44 2.07 1.00

1.76 3.84 0.00

1.72 3.11 0.00

1.92 4.15 0.00

2.52 0.50 1.00

2.34 1.31 1.00

2.62 4.47 0.00

0.21 4.84 0.00

0.21 4.86 0.00

2.37 0.76 1.00

0.26 -0.17 1.00

1.42 4.48 0.00

2.47 2.23 0.00

-0.15 3.57 0.00

1.60 2.70 0.00

-0.18 5.08 0.00

1.53 1.94 1.00

4.68 0.15 1.00

0.87 5.32 0.00

0.53 3.65 0.00

-0.10 2.22 1.00

1.65 3.60 0.00

1.85 4.19 0.00

0.39 0.77 1.00

2.66 0.30 1.00

2.02 -0.63 1.00

0.79 3.91 0.00

1.75 0.46 1.00

-1.39 5.17 0.00

-0.61 4.91 0.00

0.31 4.63 0.00

0.84 5.44 0.00

1.72 0.18 1.00

0.86 3.62 0.00

1.92 4.04 0.00

0.04 1.49 1.00

0.70 3.59 0.00

3.96 0.88 1.00

0.92 1.89 1.00

2.99 -0.49 1.00

0.41 4.57 0.00

0.71 2.16 1.00

0.08 5.62 0.00

1.72 2.93 1.00

3.67 0.07 1.00

0.67 0.36 1.00

0.58 3.14 0.00

1.08 0.31 1.00

2.46 0.89 1.00

2.70 1.49 1.00

3.66 0.71 1.00

1.50 3.73 0.00

2.47 -0.34 1.00

2.99 1.58 1.00

1.09 3.92 0.00

0.57 5.53 0.00

2.72 -1.64 1.00

3.36 0.87 1.00

2.77 0.65 1.00

3.02 0.48 1.00

2.86 2.96 0.00

-0.24 4.00 0.00

0.45 3.12 0.00

2.71 4.99 0.00

-1.03 4.68 0.00

1.40 0.98 1.00

0.96 4.68 0.00

1.75 5.33 0.00

0.77 5.18 0.00

2.10 -0.06 1.00

0.92 4.04 0.00

3.46 1.06 1.00

2.97 3.11 1.00

0.87 2.64 0.00

1.67 4.14 0.00

0.63 3.51 0.00

-0.28 5.08 0.00

-1.58 4.96 0.00

1.65 1.85 1.00

1.80 0.55 1.00

3.35 1.51 1.00

2.88 1.43 1.00

1.77 -1.10 1.00

0.27 5.25 0.00

1.59 1.77 1.00

2.06 3.67 0.00

1.41 1.07 1.00

2.30 4.20 0.00

2.07 -0.95 1.00

0.69 0.88 1.00

0.48 4.33 0.00

0.44 0.39 1.00

1.09 1.37 1.00

1.33 5.01 0.00

1.65 3.92 0.00

1.08 2.32 1.00

0.38 5.43 0.00

2.20 4.37 0.00

2.14 0.08 1.00

1.58 1.17 1.00

0.57 5.03 0.00

2.30 1.06 1.00

1.24 2.70 1.00

2.14 1.84 1.00

1.07 4.89 0.00

-0.45 6.30 0.00

0.59 4.00 0.00

0.29 4.19 0.00

1.01 0.04 1.00

1.40 4.98 0.00

-0.71 4.19 0.00

1.26 -0.01 1.00

1.87 1.79 1.00

1.38 1.53 0.00

2.65 -0.09 1.00

3.06 1.49 1.00

1.58 0.37 1.00

0.99 5.02 0.00

2.04 3.85 0.00

1.06 0.16 1.00

2.50 1.12 1.00

0.37 1.70 1.00

1.70 1.44 1.00

0.74 2.31 1.00

1.02 2.74 0.00

3.48 1.35 1.00

0.85 4.40 0.00

2.93 1.53 1.00

2.39 0.75 1.00

3.46 1.23 1.00

-0.87 3.83 0.00

1.43 4.40 0.00

1.67 0.84 1.00

2.93 4.69 0.00

1.43 0.51 1.00

2.79 0.83 1.00

0.31 5.99 0.00

1.62 2.05 1.00

0.62 2.69 0.00

2.25 1.00 1.00

2.62 1.04 1.00

2.62 0.56 1.00

0.76 4.75 0.00

1.22 3.42 0.00

0.50 4.92 0.00

3.04 0.81 1.00

2.99 4.26 0.00

3.02 0.17 1.00

2.81 1.46 1.00

2.94 1.93 1.00

1.06 -0.11 1.00

0.85 1.31 1.00

2.07 4.07 0.00

3.28 3.24 0.00

2.39 5.09 0.00

1.74 4.43 0.00

-0.29 5.27 0.00

0.02 3.96 0.00

2.59 0.76 1.00

1.58 5.20 0.00

3.20 -0.01 1.00

0.09 2.32 0.00

2.04 0.41 1.00

1.18 0.67 1.00

3.40 0.16 1.00

0.63 2.82 1.00

1.55 4.10 0.00

0.47 3.14 1.00

-0.37 3.54 0.00

2.48 1.45 1.00

2.35 3.79 0.00

0.03 3.89 0.00

2.47 0.39 1.00

2.30 2.42 1.00

-0.38 4.26 0.00

1.89 0.76 1.00

0.73 5.82 0.00

2.09 0.86 1.00

2.93 0.02 1.00

1.90 1.95 1.00

2.27 2.44 1.00

1.04 4.09 0.00

0.28 4.15 0.00

2.31 1.95 1.00

-0.33 5.96 0.00

1.28 2.93 0.00

0.06 5.42 0.00

2.14 2.32 1.00

0.32 3.79 0.00

1.20 3.29 0.00

0.96 5.13 0.00

2.52 0.80 1.00

3.32 3.02 0.00

2.05 1.74 0.00

0.94 0.86 1.00

1.19 3.10 0.00

0.57 3.44 0.00

0.76 3.22 0.00

-0.20 6.25 0.00

1.71 0.92 1.00

1.52 -0.06 1.00

2.88 0.60 1.00

1.89 0.81 1.00

0.68 3.54 0.00

0.87 4.71 0.00

1.67 5.61 0.00

0.07 3.88 0.00

1.59 2.96 0.00

1.06 2.94 1.00

1.60 0.98 1.00

3.57 3.90 0.00

2.30 2.03 1.00

3.86 1.33 1.00

1.67 5.00 0.00

0.36 1.63 1.00

0.77 4.19 0.00

2.26 1.43 1.00

1.02 -0.53 1.00

2.47 0.86 1.00

1.65 0.58 1.00

-1.04 3.76 0.00

2.09 1.52 1.00

0.13 3.98 0.00

0.32 1.49 1.00

2.13 5.38 0.00

0.12 3.40 0.00

2.12 1.68 1.00

2.16 3.67 0.00

1.57 0.62 1.00

2.06 0.13 1.00

2.36 4.00 0.00

2.22 2.46 1.00

1.85 2.47 1.00

3.11 -0.12 1.00

0.87 3.32 0.00

0.43 0.76 1.00

2.48 1.14 1.00

0.70 4.04 0.00

2.21 0.68 1.00

2.40 4.70 0.00

0.06 4.56 0.00

3.37 0.57 1.00

3.16 1.30 1.00

0.83 3.92 0.00

0.42 0.16 1.00

3.46 1.04 1.00

2.26 1.21 1.00

1.27 1.52 1.00

0.52 4.32 0.00

0.25 2.92 0.00

2.21 5.51 0.00

1.89 1.28 1.00

1.60 2.32 1.00

0.82 6.56 0.00

2.49 0.30 1.00

1.33 -0.22 1.00

1.61 -0.85 1.00

2.44 5.16 0.00

-1.05 6.37 0.00

-0.17 3.95 0.00

0.58 1.26 0.00

1.34 4.49 0.00

1.10 -0.45 1.00

1.31 0.29 1.00

1.47 0.45 1.00

2.07 0.30 1.00

1.22 -0.05 1.00

-0.72 4.69 0.00

0.57 2.39 1.00

1.91 -0.33 1.00

0.96 4.46 0.00

0.21 2.87 0.00

1.16 -1.07 1.00

2.76 -0.60 1.00

1.65 0.43 1.00

2.59 1.22 1.00

1.69 -0.06 1.00

1.55 4.65 0.00

-0.75 -0.29 1.00

1.75 3.12 0.00

1.02 6.64 0.00

2.51 1.18 1.00

1.47 4.28 0.00

1.22 1.89 1.00

1.82 0.65 1.00

2.35 1.81 1.00

4.20 0.81 1.00

1.44 4.58 0.00

0.92 3.99 0.00

1.10 4.71 0.00

2.10 3.22 0.00

3.25 2.85 0.00

1.89 1.67 1.00

0.95 0.87 1.00

-0.45 3.81 0.00

4.23 1.56 1.00

3.11 1.85 1.00

1.90 0.07 1.00

2.86 -0.30 1.00

1.57 3.94 0.00

2.31 0.49 1.00

-1.26 4.71 0.00

1.78 4.38 0.00

0.02 3.51 0.00

1.63 0.26 1.00

0.14 3.71 0.00

3.08 1.61 1.00

3.06 1.43 1.00

3.05 0.71 1.00

1.91 4.13 0.00

0.93 4.02 0.00

3.01 1.44 1.00

1.35 3.20 0.00

0.54 4.49 0.00

-0.05 3.95 0.00

0.59 4.40 0.00

1.59 5.23 0.00

0.38 5.86 0.00

2.09 0.04 1.00

2.30 3.42 0.00

2.22 -0.05 1.00

0.33 2.08 0.00

-0.16 5.09 0.00

0.19 4.19 0.00

3.31 -1.19 1.00

3.72 1.20 1.00

3.02 1.41 1.00

3.17 -0.67 1.00

2.68 1.79 1.00

0.55 0.62 1.00

3.38 0.73 1.00

0.18 3.77 0.00

1.85 0.22 1.00

3.83 0.50 1.00

2.40 1.56 1.00

-1.39 4.32 0.00

2.93 2.10 1.00

1.82 4.05 0.00

2.75 0.60 1.00

0.16 2.84 0.00

1.20 5.69 0.00

0.61 0.45 1.00

2.06 1.78 1.00

2.03 0.78 1.00

1.84 3.56 0.00

2.90 0.22 1.00

1.26 1.98 0.00

2.07 1.95 1.00

2.96 2.70 1.00

1.26 0.68 1.00

1.20 4.70 0.00

1.45 -0.25 1.00

0.75 3.44 0.00

1.54 4.08 0.00

1.46 -0.62 1.00

-0.20 5.61 0.00

1.44 6.04 0.00

1.40 1.11 1.00

0.16 0.72 1.00

-0.32 5.58 0.00

1.14 4.94 0.00

1.25 3.50 0.00

2.10 1.49 1.00

3.88 0.82 1.00

1.22 1.07 1.00

0.29 5.96 0.00

2.09 0.32 1.00

1.90 4.62 0.00

-0.64 4.09 0.00

2.82 0.48 1.00

1.34 5.60 0.00

1.26 3.31 0.00

1.38 4.11 0.00

0.30 4.34 0.00

3.04 1.66 1.00

3.28 0.70 1.00

3.64 1.55 1.00

1.75 0.54 1.00

0.74 1.44 1.00

0.80 0.93 1.00

1.60 1.27 1.00

0.95 0.87 1.00

0.34 4.98 0.00

2.83 0.61 1.00

0.61 5.24 0.00

2.73 4.17 0.00

0.32 4.48 0.00

-0.01 2.83 0.00

1.13 4.54 0.00

1.03 2.51 0.00

1.04 4.61 0.00

2.60 1.61 1.00

0.42 -0.88 1.00

1.59 0.04 1.00

0.75 3.39 0.00

3.70 -0.65 1.00

0.95 4.73 0.00

2.26 2.06 1.00

1.99 1.18 1.00

2.91 0.09 1.00

0.61 3.36 0.00

1.04 0.98 1.00

2.73 0.95 1.00

0.84 4.71 0.00

0.63 3.72 0.00

0.51 2.10 0.00

2.24 2.60 1.00

3.63 0.10 1.00

3.66 0.34 1.00

0.51 4.09 0.00

2.49 4.86 0.00

0.12 4.33 0.00

2.83 0.77 1.00

1.64 -0.20 1.00

2.02 1.23 1.00

0.60 1.28 1.00

2.07 0.82 1.00

1.79 4.36 0.00

1.01 -0.19 1.00

3.27 -0.51 1.00

2.44 1.91 1.00

0.04 5.32 0.00

0.86 4.61 0.00

0.47 6.72 0.00

3.47 2.06 0.00

1.43 2.47 0.00

1.65 4.71 0.00

0.12 2.76 0.00

1.38 0.33 1.00

2.27 -0.11 1.00

2.50 0.28 1.00

0.43 2.42 0.00

1.71 4.43 0.00

0.07 4.36 0.00

2.87 0.62 1.00

1.88 0.39 1.00

1.29 3.45 0.00

2.09 0.81 1.00

0.67 4.07 0.00

3.40 1.81 1.00

2.08 4.96 0.00

1.24 0.38 1.00

1.71 -0.37 1.00

2.25 1.59 1.00

1.44 0.07 1.00

1.56 2.11 1.00

1.65 -0.57 1.00

0.18 4.54 0.00

1.54 3.02 0.00

0.94 3.14 0.00

0.92 -0.32 1.00

1.80 4.31 0.00

3.41 0.50 1.00

2.94 2.37 1.00

1.33 4.68 0.00

1.79 4.89 0.00

1.13 4.68 0.00

1.01 0.58 1.00

3.49 2.36 1.00

2.51 5.77 0.00

1.68 3.24 0.00

1.20 1.23 1.00

1.05 2.57 1.00

0.95 3.57 0.00

3.67 4.23 0.00

0.95 5.38 0.00

1.30 -0.30 1.00

1.47 1.23 1.00

4.02 0.70 1.00

2.01 2.26 0.00

-0.12 0.27 1.00

0.46 0.90 1.00

2.50 1.00 1.00

1.91 4.27 0.00

-0.25 5.15 0.00

3.92 1.66 1.00

2.46 2.10 1.00

0.45 -0.48 1.00

1.08 2.24 1.00

1.69 1.51 1.00

1.93 4.15 0.00

-0.32 4.57 0.00

-0.25 5.27 0.00

0.55 4.41 0.00

0.03 4.55 0.00

1.24 -0.55 1.00

4.58 2.67 1.00

0.87 4.32 0.00

3.24 4.26 0.00

0.51 2.89 0.00

-0.13 4.36 0.00

1.50 4.39 0.00

3.36 5.25 0.00

4.21 1.37 1.00

2.05 2.14 1.00

-0.94 1.78 1.00

0.29 3.09 0.00

1.49 0.59 1.00

1.44 3.93 0.00

1.90 0.96 1.00

2.28 2.51 1.00

0.48 6.23 0.00

3.07 1.60 1.00

1.66 1.68 1.00

1.64 3.84 0.00

2.35 0.94 1.00

1.70 3.44 1.00

1.98 -0.40 1.00

0.62 2.93 0.00

0.48 4.23 0.00

1.73 0.19 1.00

-0.65 4.77 0.00

2.66 -0.15 1.00

0.91 0.94 1.00

1.85 -0.82 1.00

0.67 2.63 0.00

2.21 0.64 1.00

3.20 1.24 1.00

0.52 4.57 0.00

0.01 4.62 0.00

1.34 4.16 0.00

1.91 0.99 1.00

0.12 6.13 0.00

2.02 -0.05 1.00

1.42 4.64 0.00

1.45 4.45 0.00

1.22 -0.47 1.00

1.32 6.32 0.00

0.03 4.54 0.00

0.71 4.12 0.00

1.97 0.33 1.00

2.28 0.81 1.00

1.03 4.80 0.00

2.68 0.27 1.00

0.80 0.31 1.00

-0.38 2.01 1.00

2.08 5.60 0.00

2.16 1.44 1.00

1.32 -0.74 1.00

2.99 4.00 0.00

0.73 3.43 0.00

1.47 5.35 0.00

0.59 3.86 0.00

1.84 3.50 0.00

2.55 0.16 1.00

2.56 1.26 1.00

0.99 6.09 0.00

1.83 5.44 0.00

2.74 0.95 1.00

1.34 5.78 0.00

0.41 2.30 1.00

-0.17 3.87 0.00

1.17 5.39 0.00

0.90 4.56 0.00

2.92 1.08 1.00

0.93 4.52 0.00

-0.66 2.74 0.00

1.33 4.92 0.00

2.50 6.02 0.00

1.05 3.23 0.00

2.25 1.78 1.00

1.07 -0.00 1.00

0.60 3.08 0.00

1.99 2.16 1.00

2.16 4.62 0.00

3.64 0.25 1.00

0.21 3.42 0.00

0.28 4.01 0.00

2.12 0.63 1.00

0.44 5.39 0.00

2.98 1.46 1.00

1.45 4.62 0.00

1.12 5.76 0.00

1.99 0.19 1.00

0.17 3.19 0.00

0.66 3.46 0.00

1.30 1.04 1.00

0.66 4.36 0.00

-0.02 2.76 0.00

2.25 2.89 1.00

1.01 5.07 0.00

1.38 3.62 0.00

1.67 4.31 0.00

1.92 4.71 0.00

1.76 -0.84 1.00

0.05 4.13 0.00

0.32 3.91 0.00

3.74 -0.75 1.00

3.69 1.28 1.00

1.25 5.74 0.00

2.03 0.57 1.00

0.25 1.31 1.00

1.75 2.64 0.00

2.87 1.14 1.00

0.22 4.25 0.00

-0.43 3.71 0.00

0.43 4.72 0.00

2.57 0.57 1.00

0.44 4.95 0.00

2.56 0.04 1.00

1.80 5.66 0.00

2.59 1.30 1.00

-0.63 3.42 0.00

-0.53 2.53 0.00

0.25 4.50 0.00

0.27 4.98 0.00

0.63 4.46 0.00

1.93 -0.58 1.00

2.39 0.31 1.00

0.32 1.47 0.00

0.97 4.32 0.00

0.40 1.05 1.00

2.08 0.94 1.00

2.84 5.21 0.00

1.99 3.65 0.00

0.04 4.74 0.00

-0.39 5.17 0.00

2.19 -1.08 1.00

0.67 4.40 0.00

0.19 5.40 0.00

-1.31 4.56 0.00

1.00 4.40 0.00

2.26 2.80 0.00

1.72 0.88 1.00

2.25 2.20 1.00

-0.03 5.99 0.00

1.21 6.44 0.00

0.56 3.56 0.00

1.05 0.08 1.00

1.95 2.27 1.00

1.89 4.62 0.00

0.47 3.49 0.00

1.62 1.47 1.00

1.14 3.54 1.00

1.26 6.05 0.00

1.51 4.55 0.00

2.15 1.09 1.00

1.20 4.75 0.00

2.07 1.22 1.00

1.53 1.07 1.00

1.37 3.21 0.00

0.75 0.09 1.00

0.28 5.84 0.00

1.19 1.55 1.00

2.57 -1.64 1.00

2.86 -0.95 1.00

0.94 6.68 0.00

2.00 3.75 0.00

2.27 0.99 1.00

2.24 4.52 0.00

3.32 0.80 1.00

2.83 1.14 1.00

-0.73 6.25 0.00

0.91 2.99 0.00

2.08 1.08 1.00

-0.06 4.99 0.00

0.92 4.30 0.00

1.36 4.27 0.00

2.66 2.01 1.00

-0.77 3.00 0.00

2.89 1.22 1.00

2.16 0.81 1.00

1.16 5.97 0.00

1.71 2.92 1.00

0.95 0.35 1.00

1.87 5.68 0.00

1.58 1.83 1.00

2.34 3.61 0.00

1.26 2.45 1.00

3.49 1.32 1.00

2.39 1.55 1.00

1.30 5.30 0.00

0.89 5.67 0.00

2.60 -0.92 1.00

0.75 4.00 0.00

1.18 4.25 0.00

1.92 1.56 0.00

1.51 4.73 0.00

2.34 0.59 1.00

1.25 -0.21 1.00

1.99 -0.54 1.00

2.15 2.47 1.00

1.18 5.28 0.00

2.29 2.30 1.00

-0.49 3.62 0.00

0.44 4.33 0.00

-0.20 3.16 0.00

2.49 1.44 1.00

3.32 1.40 1.00

1.51 -0.20 1.00

2.17 0.24 1.00

2.79 0.52 1.00

1.29 -0.55 1.00

2.79 2.00 1.00

1.49 1.37 1.00

0.26 0.10 1.00

-0.67 3.90 0.00

0.79 3.50 0.00

0.47 3.25 0.00

1.27 0.90 1.00

-0.57 4.72 0.00

2.60 3.19 1.00

0.32 3.78 0.00

2.07 0.78 1.00

-0.18 3.99 0.00

1.99 0.45 1.00

2.30 4.51 0.00

1.54 1.67 1.00

1.01 2.65 0.00

0.98 0.78 1.00

1.43 3.34 0.00

0.52 -0.81 1.00

1.20 1.03 1.00

0.47 1.74 1.00

2.47 4.83 0.00

1.13 -0.55 1.00

0.23 4.34 0.00

2.98 1.36 1.00

0.61 5.37 0.00

3.15 0.76 1.00

1.57 0.90 1.00

0.04 5.55 0.00

0.17 3.84 0.00

-1.12 4.43 0.00

2.90 5.78 0.00

2.13 4.48 0.00

1.43 1.89 1.00

1.41 1.05 1.00

-0.21 3.80 0.00

-0.04 4.23 0.00

0.61 -0.69 1.00

0.84 1.18 1.00

2.30 3.34 0.00

-0.78 4.75 0.00

3.54 -1.23 1.00

-1.61 3.15 0.00

0.68 1.40 1.00

1.59 0.04 1.00

1.91 4.89 0.00

-0.47 5.10 0.00

-0.51 4.74 0.00

0.38 3.19 0.00

2.11 1.20 1.00

1.05 1.00 1.00

1.12 3.98 0.00

0.08 4.69 0.00

1.53 5.20 0.00

3.57 -0.27 1.00

0.17 3.61 0.00

1.03 5.17 0.00

2.08 3.13 1.00

2.51 1.86 1.00

0.34 3.91 0.00

2.46 2.83 1.00

0.71 3.18 0.00

2.83 4.09 0.00

1.13 2.31 1.00

2.57 4.05 0.00

2.16 4.12 0.00

0.61 4.46 0.00

2.54 -0.07 1.00

2.21 -1.06 1.00

0.11 3.72 0.00

3.72 -0.52 1.00

0.92 3.91 0.00

0.30 3.94 0.00

1.27 4.72 0.00

0.46 3.32 0.00

0.91 6.02 0.00

1.35 4.45 0.00

0.52 4.71 0.00

0.06 4.50 0.00

-0.19 5.20 0.00

1.16 1.45 1.00

1.94 5.63 0.00

1.78 -0.42 1.00

1.84 1.65 0.00

2.46 -0.88 1.00

2.94 0.63 1.00

2.16 1.03 1.00

1.33 4.15 0.00

0.59 3.79 0.00

1.91 3.78 0.00

3.02 1.12 1.00

2.12 3.07 0.00

0.47 3.12 0.00

1.69 1.68 1.00

1.41 -0.24 1.00

2.61 0.23 1.00

2.83 0.12 1.00

1.78 2.02 1.00

3.09 2.69 0.00

1.15 3.90 0.00

2.01 0.98 1.00

1.67 5.10 0.00

2.01 4.23 0.00

3.51 0.95 1.00

2.34 1.88 1.00

1.22 -0.04 1.00

1.27 1.17 1.00

0.12 6.21 0.00

2.27 0.98 1.00

2.97 0.84 1.00

2.22 2.23 1.00

2.33 0.19 1.00

4.54 2.59 1.00

1.26 4.91 0.00

0.69 2.84 1.00

3.77 0.11 1.00

-0.56 4.37 0.00

2.51 0.54 1.00

1.34 0.00 1.00

2.81 1.96 1.00

2.58 0.36 1.00

0.32 5.27 0.00

2.82 0.63 1.00

0.63 2.95 0.00

-0.70 3.41 0.00

2.28 -0.78 1.00

1.73 3.76 0.00

2.32 1.42 1.00

-0.66 4.24 0.00

1.89 2.69 1.00

1.95 6.44 0.00

3.59 0.99 1.00

3.80 0.60 1.00

1.20 2.15 1.00

2.31 0.51 1.00

2.89 1.39 1.00

1.64 0.49 1.00

0.33 4.78 0.00

1.87 1.72 1.00

1.52 4.74 0.00

1.46 7.06 0.00

1.28 2.63 1.00

2.14 3.09 1.00

-0.07 -0.94 1.00

0.45 2.36 1.00

2.27 1.47 1.00

1.70 3.20 0.00

0.50 0.39 1.00

-0.06 3.87 0.00

2.49 0.75 1.00

1.48 4.19 0.00

2.30 1.51 1.00

0.38 4.25 0.00

2.46 6.20 0.00

2.17 1.55 1.00

1.17 2.52 0.00

2.08 0.47 1.00

1.44 2.77 0.00

1.47 4.19 0.00

. This is a simple data set that contains 1000 entries with 2 features and corresponding class labels (0 or 1) for each entry.

Snapshot of data (first two columns are features, and last column is the class label).

Use the Python script for this task, but it needs to be modified to load the data. You can load the data as follows

Apply the SVM algorithm to obtain a classifier and plot the results.

• What is the percentage of misclassified points using your SVM classifier?

• Try the algorithm for a range of different values of C parameter [0.01, 0.1, 1.0], and provide the results together with your understanding of the influence of the C parameter.

• Compare your SVM results with those from the Perceptron in week-6.

Task 2: Consider we are learning a linear SVM for a training dataset shown in a table below, described with two features x1 and x2, and binary target y.

The classifier takes the form f(x; w1; w2; b) = sign(w1x1 + w2x2 + b)

• Draw the decision boundary of the trained SVM, and identify the support vectors.

• Calculate the parameters of the trained SVM (i.e., w1, w2, b).

week 8:

task 1: Explain how a Multi-layer Perceptron can address the limitation of a single-layer Perceptron.

Task 2: The Phyton implementation of the MLP can be found here: https://colab.research.google.com/drive/1hjFrLBz6k_q3nOeHDzEYJjhZ8w3XfYFm?usp=sharing

Before running the code, make sure you are using free GPU processing power provided by Google:

• Click on Edit/Notebook settings

• Select GPU

• Save

The script applies Multi-layer Perceptron Classifier (Neural Network) to the Iris dataset. Search for theparameter hidden_layer_sizes in the code. You can use this parameter to define the number of

neurons and layers in the network architecture:

ith element represents the number of neurons in the ith hidden layer.

For example:

• hidden_layer_sizes=(2,4) defines a network with 2 hidden layers; first layer with 2 neurons and second layer with 4 neurons

• hidden_layer_sizes=(20,4,2) defines a network with 3 hidden layers; first layer with 20 neurons, second layer with 4 neurons, and third layer with 2 neurons

Try a few different configurations for the network architecture and discuss your observations in the

logbook.

How does the number of neurons and hidden layers affect the performance of the network?

Can you find any architecture that yields 100% accuracy on test set?

Week 9:

Task 1

Describe one method for setting Hyperparameters in k-NN classification method.

Task 2

Based on the cross-validation results in the Introduction exercises above, choose the best value for k

in k-NN. Justify your choice.

Then retrain the image classifier using half the CIFAR10 training data, and test it on all the test data.

What is the level accuracy?

Tip: make sure your Colab use GPU to speed up the process.

Week 10:

Task 1

For the convolution operation given below, compute the destination pixel value in the output image by applying the 3×3 filter to the source (input) image. Provide the details of your calculations.

Task 2

A CNN model has been provided for you here:

Please answer the questions provided in the Python script

Week 11:

Task 1

Table below shows some data from the early days of the Italian clothing company Benetton. Each row in the table shows Benetton’s sales for a year and the amount spent on advertising that year. In this case, our outcome of interest is sales—it is what we want to predict. If we use advertising as the predictor variable, we can find a linear regression model which would give estimates of the sales.

Which one of the following will be the best regression model? Justify your answer.

• Sales = 22.60 × Advertising + 169.2

• Sales = 23.42 × Advertising + 167.7

• Sales = 23.10 × Advertising + 168.1


Tip: Calculate the Least Squares Error.

Task 2

Regression_Advertising.csv:

1000,9914

4000,40487

5000,54324

4500,50044

3000,34719

4000,42551

9000,94871

11000,118914

15000,158484

12000,131348

7000,78504

3000,36284

This is a simple dataset that contains, in unit of £, the marketing spend along with the company sales for each month for a Software company. Using the advertising data, model the linear relationship between the marketing budget and sales. Then answer the following questions:

• How much sale can we expect when the marketing budget is zero?

• For a marketing spend of £7,500, how much sale can we expect?

Tip: use the Python script.

Task 3

Modify the Python script to compute the cost function J for the flitted line in Task 2. Provide a snapshot of your additions to the script. Also provide the results.

Order Now

Get expert help for TMD9 Gates and many more. 24X7 help, plag free solution. Order online now!

Universal Assignment (August 30, 2025) TMD9 Gates. Retrieved from https://universalassignment.com/tmd9-gates/.
"TMD9 Gates." Universal Assignment - August 30, 2025, https://universalassignment.com/tmd9-gates/
Universal Assignment January 8, 2023 TMD9 Gates., viewed August 30, 2025,<https://universalassignment.com/tmd9-gates/>
Universal Assignment - TMD9 Gates. [Internet]. [Accessed August 30, 2025]. Available from: https://universalassignment.com/tmd9-gates/
"TMD9 Gates." Universal Assignment - Accessed August 30, 2025. https://universalassignment.com/tmd9-gates/
"TMD9 Gates." Universal Assignment [Online]. Available: https://universalassignment.com/tmd9-gates/. [Accessed: August 30, 2025]

Please note along with our service, we will provide you with the following deliverables:

Please do not hesitate to put forward any queries regarding the service provision.

We look forward to having you on board with us.

Most Frequent Questions & Answers

Universal Assignment Services is the best place to get help in your all kind of assignment help. We have 172+ experts available, who can help you to get HD+ grades. We also provide Free Plag report, Free Revisions,Best Price in the industry guaranteed.

We provide all kinds of assignmednt help, Report writing, Essay Writing, Dissertations, Thesis writing, Research Proposal, Research Report, Home work help, Question Answers help, Case studies, mathematical and Statistical tasks, Website development, Android application, Resume/CV writing, SOP(Statement of Purpose) Writing, Blog/Article, Poster making and so on.

We are available round the clock, 24X7, 365 days. You can appach us to our Whatsapp number +1 (613)778 8542 or email to info@universalassignment.com . We provide Free revision policy, if you need and revisions to be done on the task, we will do the same for you as soon as possible.

We provide services mainly to all major institutes and Universities in Australia, Canada, China, Malaysia, India, South Africa, New Zealand, Singapore, the United Arab Emirates, the United Kingdom, and the United States.

We provide lucrative discounts from 28% to 70% as per the wordcount, Technicality, Deadline and the number of your previous assignments done with us.

After your assignment request our team will check and update you the best suitable service for you alongwith the charges for the task. After confirmation and payment team will start the work and provide the task as per the deadline.

Yes, we will provide Plagirism free task and a free turnitin report along with the task without any extra cost.

No, if the main requirement is same, you don’t have to pay any additional amount. But it there is a additional requirement, then you have to pay the balance amount in order to get the revised solution.

The Fees are as minimum as $10 per page(1 page=250 words) and in case of a big task, we provide huge discounts.

We accept all the major Credit and Debit Cards for the payment. We do accept Paypal also.

Popular Assignments

Assignment Help in Parkville – Universal Assignment

Parkville, located just 3 km north of Melbourne CBD, is one of Melbourne’s most prestigious academic hubs. It is home to The University of Melbourne, Monash University (Pharmacy campus), and major research institutes like the Walter and Eliza Hall Institute and the Royal Melbourne Hospital precinct. With such a concentration

Read More »

Assignment Help in Oakleigh East – Universal Assignment

Oakleigh East, located about 17 km south-east of Melbourne CBD, is a peaceful and residential suburb in the City of Monash, known for its family-friendly environment and convenient access to shopping and educational facilities. With nearby institutions like Monash University, Holmesglen Institute, and TAFE Victoria, many students living in Oakleigh

Read More »

Assignment Help in Preston – Universal Assignment

Preston, located about 9 km north of Melbourne’s CBD, is a thriving multicultural suburb that attracts many university and TAFE students. With the presence of Melbourne Polytechnic (Preston Campus) and close proximity to La Trobe University (Bundoora campus) and RMIT University, Preston has a large student population. While the suburb

Read More »

Assignment Help in Point Cook – Universal Assignment

Point Cook, located around 25 km southwest of Melbourne’s CBD, is a fast-growing residential suburb in the City of Wyndham. Known for its modern housing estates, coastal beauty, and cultural diversity, Point Cook is also home to many university and TAFE students. With Victoria University, RMIT, Deakin University, and the

Read More »

Assignment Help in Pascoe Vale South – Universal Assignment

Pascoe Vale South, situated about 9 km north of Melbourne’s CBD, is a quiet, family-friendly suburb within the City of Merri-bek. Known for its leafy streets, community parks, and excellent schools, the suburb is also home to many university students due to its proximity to RMIT University, La Trobe University,

Read More »

Assignment Help in Pascoe Vale – Universal Assignment

Pascoe Vale, located just 10 km north of Melbourne’s CBD, is a thriving suburb in the City of Merri-bek. It is a popular residential area for students due to its proximity to leading universities such as RMIT University, La Trobe University, and the University of Melbourne. With excellent transport links

Read More »

Assignment Help in Prahran – Universal Assignment

Prahran, located just 5 km southeast of Melbourne’s CBD, is one of the city’s most vibrant inner suburbs. Known for its trendy cafes, boutique shopping on Chapel Street, and buzzing nightlife, Prahran also has a large student population. Its close proximity to Monash University (Caulfield campus), Swinburne University of Technology,

Read More »

Assignment Help in Parkdale – Universal Assignment

Parkdale, located around 23 km south-east of Melbourne CBD, is a beautiful beachside suburb in the City of Kingston. Known for its relaxed lifestyle, coastal charm, and proximity to Monash University, Holmesglen Institute, and Deakin University, Parkdale is home to many students balancing academic studies with personal and professional commitments.

Read More »

Assignment Help in Oakleigh South – Universal Assignment

Oakleigh South, located about 20 km south-east of Melbourne CBD, is a suburban area in the City of Kingston, known for its family-friendly environment, parks, and convenient access to educational facilities. With nearby institutions like Monash University, Holmesglen Institute, and TAFE campuses, students in Oakleigh South often require professional assignment

Read More »

Assignment Help in Ormond – Universal Assignment

Ormond, located about 12 km south-east of Melbourne CBD, is a well-connected residential suburb in the City of Glen Eira. Known for its proximity to Monash University Caulfield Campus, Holmesglen Institute, and local schools, Ormond attracts both local and international students. With increasing academic demands, many students search for assignment

Read More »

Assignment Help in Oakleigh – Universal Assignment

Oakleigh, located about 14 km south-east of Melbourne CBD, is a lively suburb in the City of Monash, known for its multicultural community, shopping precincts, and proximity to educational institutions. With access to Monash University, Holmesglen Institute, and nearby TAFE campuses, many students in Oakleigh seek professional assignment help in

Read More »

Assignment Help in Oak Park – Universal Assignment

Oak Park, located about 12 km north of Melbourne CBD, is a suburban area in the City of Moreland, known for its peaceful residential streets, schools, and local amenities. With access to nearby institutions such as RMIT University, University of Melbourne, and TAFE campuses, many students in Oak Park seek

Read More »

Assignment Help in Nunawading – Universal Assignment

Nunawading, located about 20 km east of Melbourne CBD, is a thriving suburb in the City of Whitehorse, known for its leafy streets, shopping centres, and proximity to educational institutions. With access to Deakin University, Box Hill Institute, and nearby TAFE campuses, students in Nunawading often seek professional assignment help

Read More »

Assignment Help in Notting Hill – Universal Assignment

Notting Hill, located about 22 km south-east of Melbourne CBD, is a residential suburb in the City of Monash, known for its peaceful environment and proximity to shopping centres, schools, and educational institutes. With access to nearby campuses like Monash University, Holmesglen Institute, and TAFE Victoria, many students in Notting

Read More »

Assignment Help in Northcote – Universal Assignment

Northcote, located about 7 km north-east of Melbourne CBD, is a vibrant suburb known for its multicultural community, trendy cafes, and lively student population. With easy access to RMIT University, University of Melbourne, and nearby TAFE institutes, Northcote has become a popular area for students pursuing higher education. Many students

Read More »

Assignment Help in North Melbourne – Universal Assignment

North Melbourne, located just 2 km north-west of Melbourne CBD, is a bustling inner-city suburb known for its historic architecture, multicultural community, and proximity to major educational institutions. With easy access to RMIT University, University of Melbourne, and nearby TAFE campuses, students in North Melbourne often require professional assignment help

Read More »

Assignment Help in Noble Park – Universal Assignment

Noble Park, located about 25 km south-east of Melbourne CBD, is a thriving suburb in the City of Greater Dandenong. Known for its multicultural community, shopping centres, and schools, Noble Park is home to a growing student population. With access to nearby institutions like Monash University, Chisholm Institute, and TAFE

Read More »

Assignment Help in Niddrie – Universal Assignment

Niddrie, located about 10 km north-west of Melbourne CBD, is a bustling suburb known for its residential communities, shopping centres, and schools. With easy access to Victoria University, RMIT, and nearby TAFE institutes, Niddrie is home to many students who often seek assignment help in Niddrie to manage academic workloads

Read More »

Assignment Help in Narre Warren South – Universal Assignment

Narre Warren South, located 38 km south-east of Melbourne CBD, is a growing suburb in the City of Casey. Known for its residential communities, schools, and green spaces, Narre Warren South is home to many students who pursue higher education at nearby institutions such as Monash University Clayton Campus, Federation

Read More »

Assignment Help in Narre Warren North – Universal Assignment

Narre Warren North, located about 36 km south-east of Melbourne CBD, is a fast-growing suburb in the City of Casey. Known for its family-friendly community, excellent schools, and green spaces, the suburb also attracts students pursuing higher education in Melbourne. With access to nearby institutions like Monash University Clayton Campus,

Read More »

Assignment Help in Narre Warren – Universal Assignment

Narre Warren, located about 38 km south-east of Melbourne CBD, is one of the fastest-growing suburbs in the City of Casey. Known for Fountain Gate Shopping Centre, family-friendly communities, and excellent schools, Narre Warren also attracts a large number of students pursuing higher education in Melbourne and surrounding areas. With

Read More »

Assignment Help in Mulgrave – Universal Assignment

Mulgrave, located 21 km south-east of Melbourne CBD, is a vibrant suburb with a mix of residential, business, and educational opportunities. With close access to Monash University Clayton Campus, Holmesglen Institute, and nearby TAFE colleges, Mulgrave attracts a large number of students. Many students here face challenges with assignments and

Read More »

Assignment Help in Mount Waverley – Universal Assignment

Mount Waverley, located 16 km south-east of Melbourne CBD, is a popular residential suburb with excellent schools, universities nearby, and a strong student community. With easy access to Monash University Clayton Campus, Holmesglen Institute, and Deakin University, Mount Waverley has become a hub for students pursuing higher education. To manage

Read More »

Assignment Help in Mordialloc – Universal Assignment

Mordialloc, located 24 km south-east of Melbourne CBD, is a picturesque bayside suburb known for its beaches, boating culture, and community lifestyle. Along with its relaxed environment, it is home to students from nearby institutions such as Monash University, Chisholm Institute, and Holmesglen TAFE. Many of these students seek assignment

Read More »

Assignment Help in Mooroolbark – Universal Assignment

Mooroolbark, located 31 km east of Melbourne’s CBD, is a vibrant suburb in the Yarra Ranges, known for its family-friendly environment, schools, and proximity to tertiary institutions like Swinburne University and Box Hill Institute. Many local and international students live in the area and often seek assignment help in Mooroolbark

Read More »

Assignment Help in Moorabbin – Universal Assignment

Moorabbin, located 15 km southeast of Melbourne’s CBD, is a busy suburb well-known for its business district, schools, and proximity to Monash University, Holmesglen Institute, and other major educational hubs. Many students in Moorabbin balance studies with part-time jobs, making assignment help in Moorabbin a vital service for academic success.

Read More »

Assignment Help in Moonee Ponds – Universal Assignment

Moonee Ponds, located just 7 km northwest of Melbourne’s CBD, is a lively inner-city suburb known for its shopping precincts, schools, and close connection to major universities. Students living in Moonee Ponds enjoy easy access to educational institutions but often struggle with heavy workloads and tight deadlines. That’s why assignment

Read More »

Assignment Help in Montmorency – Universal Assignment

Montmorency, a leafy suburb located 18 km northeast of Melbourne’s CBD, is a peaceful and family-friendly area known for its natural charm, schools, and close-knit community. Students in Montmorency benefit from being near Melbourne’s major universities and colleges, but they often face challenges balancing academics with work and personal life.

Read More »

Assignment Help in Mont Albert North – Universal Assignment

Mont Albert North, a welcoming residential suburb located 13 km east of Melbourne’s CBD, is well-known for its family-friendly community, green spaces, and proximity to leading schools and universities. Many students living here juggle study, part-time jobs, and personal commitments, which can make academic life stressful. That’s where our assignment

Read More »

Assignment Help in Mont Albert – Universal Assignment

Mont Albert, a leafy suburb located 12 km east of Melbourne’s CBD, is known for its quiet residential streets, historic architecture, and excellent access to educational facilities. Many students living in Mont Albert are enrolled in nearby universities, colleges, and TAFE institutes. To support their academic journey, our assignment help

Read More »

Can't Find Your Assignment?