GEEN 1121 Model Solution

Program: MSc Mechanical Engineering, Meng Mechanical Engineering Module
Title & Code: Advanced Thermo-fluid Application-GEEN1121
Level: 7
Date: April/May 2021

University of Greenwich

Questio nSolutionMark
Q1Solution (a)
πœƒπ‘š = is the log mean temperature difference and it is expressed as Δ𝑇1βˆ’ Δ𝑇2 πœƒπ‘š = 𝑙𝑛(Δ𝑇 ⁄Δ𝑇 ) 1 2
Where, Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,𝑖𝑛 Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ for parallel flow Heat exchanger Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,𝑖𝑛 for counter flow Heat exchanger
Solution (b)
The heat exchangers usually operate for long periods of time with no change in their operating conditions, and then they can be modeled as steady-flow devices. As such, the mass flow rate of each fluid remains constant and the fluid properties such as temperature and velocity at any inlet and outlet remain constant. The kinetic and potential energy changes are negligible. The specific heat of a fluid can be treated as constant in a specified temperature range. Axial heat conduction along the tube is negligible. Finally, the outer surface of the heat exchanger is assumed to be perfectly insulated so that there is no heat loss to the surrounding medium and any heat transfer thus occurs is between the two fluids only.
Solution (c) Heat transfer from exhaust gas can be determined by (i) π‘ž = π‘šΜ‡ π‘”π‘Žπ‘  Γ— 𝑐𝑝,π‘”π‘Žπ‘  Γ— (π‘‡π‘”π‘Žπ‘ ,𝑖𝑛 βˆ’ π‘‡π‘”π‘Žπ‘ ,π‘œπ‘’π‘‘) 200π‘˜π‘” β„Ž = ( ) ( ) β„Ž 3600 𝑠 Γ— (1.13 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾) Γ— (350 βˆ’ 100)𝐾 = 15.694 π‘˜π‘Š

Let the exit temperature of the water to be t exit, therefore,










5















5



3

1400π‘˜π‘” β„Ž 15.694 π‘˜π‘Š = ( )( ) Γ— (4.19 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾) Γ— (𝑑𝑒π‘₯𝑖𝑑 βˆ’ 10)𝐾 β„Ž 3600 𝑠

Rearranging we have
15.694 π‘˜π‘Š (0.389 Γ— 4. ) = (𝑑𝑒π‘₯𝑖𝑑 βˆ’ 10)𝐾 19
𝑑𝑒π‘₯𝑖𝑑 = 9.63 + 10 = 19.63 π‘œπΆ
The overall heat transfer coefficient is determined from the following equation
1 1 1 1 = + = 4.0 π‘š2 πΎβ„π‘˜π‘Š π‘Žπ‘›π‘‘ π‘ˆ = = 0.25 π‘˜π‘Šβ„π‘š2 𝐾 π‘ˆ 0.3 1.5 4
The logarithmic mean effective temperature can be found (for parallel flow) by
Δ𝑇1βˆ’ Δ𝑇2 πœƒπ‘š = 𝑙𝑛(Δ𝑇 ⁄Δ𝑇 ) 1 2
Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,𝑖𝑛 Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ for parallel flow Heat exchanger
Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,𝑖𝑛 = 350 βˆ’ 10 = 340π‘œπΆ Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ = 100 βˆ’ 19.63 = 80.37π‘œπΆ
340 βˆ’ 80.37 πœƒπ‘š = = 180.1π‘œπΆ 𝑙𝑛(340⁄80.37)
The heat transfer can also be determined from
π‘ž = π‘ˆπ΄πœƒπ‘š 𝐴 = πœ‹π‘‘πΏ Rearranging the above equation in terms of L we have
π‘ž 15.694 𝐿 = = = 1.48 π‘š πœ‹π‘‘π‘ˆπœƒπ‘š πœ‹ Γ— 0.075 Γ— 0.25 Γ— 180.1

The logarithmic mean effective temperature can be found (for counter flow) by









3





















5


Δ𝑇1βˆ’ Δ𝑇2 πœƒπ‘š = 𝑙𝑛(Δ𝑇 ⁄Δ𝑇 ) 1 2
Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,𝑖𝑛 for counter flow Heat exchanger
Δ𝑇1 = π‘‡β„Ž,𝑖𝑛 βˆ’ 𝑇𝑐,π‘œπ‘’π‘‘ = 350 βˆ’ 19.63 = 330.37π‘œπΆ Δ𝑇2 = π‘‡β„Ž,π‘œπ‘’π‘‘ βˆ’ 𝑇𝑐,𝑖𝑛 = 100 βˆ’ 10 = 90π‘œπΆ
330.37 βˆ’ 90 πœƒπ‘š = = 184.84π‘œπΆ 𝑙𝑛(330.37⁄90)
The heat transfer can also be determined from
π‘ž = π‘ˆπ΄πœƒπ‘š 𝐴 = πœ‹π‘‘πΏ Rearranging the above equation in terms of L we have
π‘ž 15.694 𝐿 = = = 1.44π‘š πœ‹π‘‘π‘ˆπœƒπ‘š πœ‹ Γ— 0.075 Γ— 0.25 Γ— 184.84











4
Q2
Solution (a) The vorticity is twice the average angular rotation of a fluid element. It can be calculated by taking the Curl of the velocity vector.
Solution (b-i) πœ™ = π‘šπΏπ‘›(π‘Ÿ)
πœ•πœ™ π‘š π‘£π‘Ÿ = πœ•π‘Ÿ = π‘Ÿ 1 πœ•πœ™ π‘£πœƒ = π‘Ÿ πœ•πœƒ = 0
Solution (b-ii) π‘š 1 πœ•πœ“ πœ•πœ“ π‘£π‘Ÿ = π‘Ÿ = π‘Ÿ πœ•πœƒ ⟹ πœ•πœƒ = π‘š


4 marks






4 marks

Integrate with respect to πœƒ:
πœ“ = π‘šπœƒ + 𝑓1(π‘Ÿ)

On the other hand, 𝑣 = 0 = βˆ’ πœ•πœ“ πœƒ πœ•π‘Ÿ Therefore, πœ“ is not function of π‘Ÿ, so 𝑓1(π‘Ÿ) is a constant and the equation for πœ“ becomes: πœ“ = π‘šπœƒ + 𝐢1
𝐢1 is an arbitrary constant. Also, πœ“ = 0 for πœƒ = πœ‹ 3
Thus, 0 = π‘š Γ— πœ‹ + 𝐢 ⟹ 𝐢 = βˆ’π‘š Γ— πœ‹ 3 1 1 3
πœ‹ πœ‹ πœ“ = π‘šπœƒ βˆ’ π‘š = π‘š(πœƒ βˆ’ ) 3 3
Solution (b-iii) At point 𝐡, π‘Ÿ = √π‘₯2 + 𝑦2 = √12 + 42 = 4.12
πœƒ = tanβˆ’1 𝑦) = tanβˆ’1(4) = 1.33 ( π‘₯
The value of the stream function at B:
πœ‹ πœ“π΅ = βˆ’0.71 = π‘š(1.33 βˆ’ 3) π‘š = βˆ’2.51












12 marks











5 marks
Q3Solution (a) (i)








6
T (oC)s (kJ/kg-K)h (kJ/kg)
100.9305 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾256.58
12.230.93773 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾258.69
200.9628 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾265.86



(ii)
Solution Q3 (a-ii)
Determine the properties at different states.
State1: Refer the following value for saturated vapour of Refrigerant 134a at 𝑇1 = βˆ’10.09π‘œπΆ from property table, we can read. β„Ž1 = β„Žπ‘” = 244.46 π‘˜π½β„π‘˜π‘” 𝑠1 = 𝑠𝑔 = 0.93773 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾
State2: the compression process through compressor 1 is isentropic that is 𝑠2 = 𝑠1 = 0.93773 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾 From superheated table at 5 bar (0.4 MPa) we read
By interpolation assuming linearity find the temperature and enthalpy 20 βˆ’ 𝑇 0.9628 βˆ’ 0.93773 = 20 βˆ’ 10 0.9628 βˆ’ 0.9305 20 βˆ’ 𝑇 = 0.777 10 𝑇2 = 20 βˆ’ (10 Γ— 0.77) = 12.23π‘œπΆ For enthalpy 265.86 βˆ’ β„Ž 0.9628 βˆ’ 0.93773 = 265.86 βˆ’ 256.59 0.9628 βˆ’ 0.9305

265.86 βˆ’ β„Ž 9.27

= 0.777

β„Ž2 = 265.86 βˆ’ (9.27 Γ— 0.77) = 258.69 π‘˜π½β„π‘˜π‘”

state5: refrigerant is leaving the condensed as saturated liquid at 𝑃5 = 8 π‘π‘Žπ‘Ÿ

β„Ž5 = β„Žπ‘“ = 95.47 π‘˜π½β„π‘˜π‘”

State6: throttling of the refrigerant and enthalpy remains constant and therefore,

β„Ž6 = 95.47 π‘˜π½β„π‘˜π‘”

We can determine the quality of the steam by reading the enthalpy value from the property table at 𝑃6 = 4 π‘π‘Žπ‘Ÿ pressure.

β„Žπ‘“ = 63.94 π‘˜π½β„π‘˜π‘” β„Žπ‘“π‘” = 191.62 π‘˜π½β„π‘˜π‘”

(95.47 βˆ’ 63.94) π‘˜π½β„π‘˜π‘”

π‘₯6 =

191.62 π‘˜π½β„π‘˜π‘”

= 0.165

State7: Refer the following value for saturated liquid at 𝑃7 = 4 π‘π‘Žπ‘Ÿ

from property table:

β„Ž7 = β„Žπ‘“ = 63.94 π‘˜π½β„π‘˜π‘”

State8: Throttling occurs as the refrigerant flows through the expansion valve.

Therefore,

β„Ž8 = β„Ž7 = 63.94 π‘˜π½β„π‘˜π‘”

State3: Refer the following value for saturated vapour at 𝑃3 = 4 π‘π‘Žπ‘Ÿ

from property table,

β„Ž3 = β„Žπ‘” = 259.55 π‘˜π½β„π‘˜π‘”

State 9: The fraction of the flow into the flash chamber at state 6 that exits as saturated vapour at state 3 is equal to the quality at state 6 (π‘₯6). The liquid leaving the flash chamber at state 7 is the fraction (1 βˆ’ π‘₯6). With these flow rates ratio,

0 = (1 βˆ’ π‘₯6)β„Ž2 + π‘₯6β„Ž3 βˆ’ 1β„Ž9 β„Ž9 = (1 βˆ’ π‘₯6)β„Ž2 + π‘₯6β„Ž3

β„Ž9 = (1 βˆ’ 0.165)(258.69 π‘˜π½β„π‘˜π‘”) + (0.165)(259.55 π‘˜π½β„π‘˜π‘”) = 258.83 π‘˜π½β„π‘˜π‘”

Use the table to obtain the value of specific entropy corresponding to 𝑃9 = 4 π‘π‘Žπ‘Ÿ and β„Ž9 = 258.83 π‘˜π½β„π‘˜π‘” ∢










From superheated table at 8 bar (0.8 MPa) we read

T (oC)s (kJ/kg-K)h (kJ/kg)
100.9305 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾256.58
12.42
258.83














200.9628 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾265.86



8
























6

By interpolation assuming linearity find the temperature and enthalpy 20 βˆ’ 𝑇 265.86 βˆ’ 258.83 = 20 βˆ’ 10 265.86 βˆ’ 256.58 20 βˆ’ 𝑇 = 0.758 10 𝑇2 = 20 βˆ’ (10 Γ— 0.758) = 12.42π‘œπΆ For enthalpy 0.9628 βˆ’ 𝑠 0.9628 βˆ’ 0.93773 = 0.9628 βˆ’ 0.9305 0.9628 βˆ’ 0.9305 0.9628 βˆ’ 𝑠 = 0.758 0.0323 𝑠9 = 0.9628 βˆ’ (0.0323 Γ— 0.758) = 0.9383 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾
State4: The compression process through compressor 2 is isentropic that is 𝑠3 = 𝑠4 = 0.9383 π‘˜π½β„π‘˜π‘” βˆ’ 𝐾.
β„Ž4 = 273.5 π‘˜π½β„π‘˜π‘” ∢
From superheated table at 8 bar (0.8 MPa) we read T (oC) s (kJ/kg-K) h (kJ/kg) 31.31 0.9183 267.29 37.2 0.9383 273.5 40 0.9480 276.45
By interpolation assuming linearity find the temperature and enthalpy 40 βˆ’ 𝑇 0.9480 βˆ’ 0.9383 = 40 βˆ’ 31.31 0.9480 βˆ’ 0.9183 40 βˆ’ 𝑇 = 0.327 8.69 𝑇4 = 40 βˆ’ (8.69 Γ— 0.327) = 37.2π‘œπΆ For enthalpy 276.45 βˆ’ β„Ž 0.9480 βˆ’ 0.9383 = 276.45 βˆ’ 267.29 0.9480 βˆ’ 0.9183 276.45 βˆ’ β„Ž = 0.327 9.16 β„Ž4 = 276.45 βˆ’ (9.16 Γ— 0.327) = 273.5 π‘˜π½β„π‘˜π‘”
(iii)

Initially determine the mass flow rates to determine the compressor power. For the evaporator, 𝑄̇𝑖𝑛 = π‘šΜ‡ 1(β„Ž1 βˆ’ β„Ž8) 𝑄̇𝑖𝑛 10 π‘‘π‘œπ‘›π‘  211 π‘˜π½β„π‘šπ‘–π‘› 1 π‘šπ‘–π‘› π‘šΜ‡ 1 = (β„Ž βˆ’ β„Ž ) = (244.46 βˆ’ 63.94) π‘˜π½β„π‘˜π‘” [ 1 π‘‘π‘œπ‘› ] ( 60 𝑠 ) 1 8 = 0.195 π‘˜π‘”β„π‘ 
Also, since (1 βˆ’ π‘₯6) is the fraction of the total flow passing through the evaporator,
π‘šΜ‡1 = (1 βˆ’ π‘₯ ) π‘šΜ‡ 3 6 π‘šΜ‡ 1 0.195 π‘˜π‘”β„π‘  π‘šΜ‡ 3 = (1 βˆ’ π‘₯ ) = (1 βˆ’ 0.165) = 0.234 π‘˜π‘”β„π‘  6
(iv)
Power input to compressor 1 π‘ŠΜ‡ π‘π‘œπ‘šπ‘,1 = π‘šΜ‡ 1(β„Ž2 βˆ’ β„Ž1) = (0.195 π‘˜π‘”β„π‘ )(258.69 βˆ’ 244.46) π‘˜π½β„π‘˜π‘” = 2.77 π‘˜π‘Š Power input to compressor 2 π‘ŠΜ‡ π‘π‘œπ‘šπ‘,2 = π‘šΜ‡ 2(β„Ž4 βˆ’ β„Ž3) = (0.234 π‘˜π‘”β„π‘ )(273.5 βˆ’ 259.55) π‘˜π½β„π‘˜π‘” = 3.26 π‘˜π‘Š
(v)
The coefficient of performance is 𝑄̇𝑖𝑛 𝐢. 𝑂. 𝑃 = π‘ŠΜ‡ π‘π‘œπ‘šπ‘,1 + π‘ŠΜ‡ π‘π‘œπ‘šπ‘,2 10 π‘‘π‘œπ‘›π‘  211 π‘˜π½β„π‘šπ‘–π‘› 1 π‘šπ‘–π‘› 1 π‘˜π‘Š = (10.31 + 6.64) π‘˜π½β„π‘˜π‘” [ 1 π‘‘π‘œπ‘› ] ( 60 𝑠 )(1 π‘˜π½β„π‘ ) = 5.8

3



2
Q4Solution (a)

A heat exchanger is classified as being compact if  > 700 m2/m3 or (200 ft2/ft3) where  is the ratio of the heat transfer surface area to its volume which is called the area density. The area density for double-pipe heat exchanger can not be in the order of 700.

2

Solution (b) No, it cannot be classified as a compact heat exchanger. As the heat transfer area to volume ratio is below 700 m2/m3

2


Solution (c)

In counter-flow heat exchangers, the hot and the cold fluids move
parallel to each other, but both enter the heat exchanger at2
opposite ends and flow in opposite direction. In cross-flow heat
exchangers, the two fluids usually move perpendicular to each
other.
Solution (d)

1
The cross-flow is said to be unmixed when the plate fins force the
fluid to flow through a particular inter fin spacing and prevent it
from moving in the transverse direction. When the fluid is free to
move in the transverse direction, the cross-flow is said to be mixed.

Solution (e)

In the shell and tube exchangers, baffles are commonly placed in5
the shell to force the shell side fluid to flow across the shell to
enhance heat transfer and to maintain uniform spacing between
the tubes. Baffles disrupt the flow of fluid, and an increased
pumping power will be needed to maintain flow. On the other hand,
baffles eliminate dead spots and increase heat transfer rate.
Solution (f)
Open question
Q5
Solution (a)
Applying Bernoulli’s equation from far upstream to just upstream the rotor:
1 1 π‘ƒπ‘œ + πœŒπ‘ˆ2 = 𝑃 + πœŒπ‘’2 2 π‘œ 2 It is also valid to apply Bernoulli’s equation from just behind the rotor to the far downstream wake.
1 1 𝑃 βˆ’ βˆ†π‘ƒ + πœŒπ‘’2 = π‘ƒπ‘œ + πœŒπ‘’2 2 2 1

.

Combining the two equations yields: 𝑃 + 1 πœŒπ‘ˆ2 + 𝑃 βˆ’ βˆ†π‘ƒ + 1 πœŒπ‘ˆ2 + 1 πœŒπ‘’2 = 𝑃 + 𝑃 + 1 πœŒπ‘’2 + 1 πœŒπ‘’2 π‘œ 2 π‘œ 2 π‘œ 2 π‘œ 2 2 1
1 1 ⟹ πœŒπ‘ˆ2 βˆ’ βˆ†π‘ƒ = πœŒπ‘’2 2 π‘œ 2 1 ⟹ βˆ†π‘ƒ = 1 𝜌(π‘ˆ2 βˆ’ 𝑒2) 2 π‘œ 1
Therefore the thrust on the rotor is: 1 𝑇 = 𝜌𝐴(π‘ˆ2 βˆ’ 𝑒2) 2 π‘œ 1
Now applying the rate of change of momentum:
𝑇 = π‘šΜ‡ (π‘ˆπ‘œ βˆ’ 𝑒1)
Since π‘šΜ‡ = πœŒπ‘ˆπ‘œπ΄π‘œ = πœŒπ‘’π΄ = πœŒπ‘’1𝐴1
Implies 𝑇 = πœŒπ‘’π΄(π‘ˆπ‘œ βˆ’ 𝑒1)
Combining the two equations for the thrust yields:
1 𝜌𝐴(π‘ˆ2 βˆ’ 𝑒2) = πœŒπ‘’π΄(π‘ˆ βˆ’ 𝑒 ) 2 π‘œ 1 π‘œ 1
1 ⟹ (π‘ˆπ‘œ βˆ’ 𝑒1)(π‘ˆπ‘œ + 𝑒1) = 𝑒(π‘ˆπ‘œ βˆ’ 𝑒1) ⟹ 2
1 𝑒 = (π‘ˆπ‘œ + 𝑒1) 2
Solution (b) π‘ˆπ‘œ = 12π‘šπ‘ βˆ’1 π‘Ž = 0.21
π‘ˆπ‘œ βˆ’ 𝑒1 π‘Ž = ⟹ π‘Žπ‘ˆπ‘œ = π‘ˆπ‘œ βˆ’ 𝑒 π‘ˆπ‘œ
𝑒 = π‘ˆπ‘œ βˆ’ π‘Žπ‘ˆπ‘œ = π‘ˆπ‘œ(1 βˆ’ π‘Ž)
𝑒 = 12(1 βˆ’ 0.21)


















12 marks




















4 marks


𝑒 = 9.48π‘šπ‘ βˆ’1
Solution (c)
1 𝑒 = (π‘ˆπ‘œ + 𝑒1) ⟹ 2𝑒 = π‘ˆπ‘œ + 𝑒1 2
𝑒1 = 2𝑒 βˆ’ π‘ˆπ‘œ
𝑒1 = 2π‘ˆπ‘œ(1 βˆ’ π‘Ž) βˆ’ π‘ˆπ‘œ = 2π‘ˆπ‘œ βˆ’ 2π‘Žπ‘ˆπ‘œ βˆ’ π‘ˆπ‘œ
𝑒1 = π‘ˆπ‘œ βˆ’ 2π‘Žπ‘ˆπ‘œ ⟹ 𝑒1 = π‘ˆπ‘œ(1 βˆ’ 2π‘Ž)
𝑒1 = 12(1 βˆ’ 2 Γ— 0.21) ⟹ 𝑒1 = 6.96π‘šπ‘ βˆ’1
Solution (c) πœ‹π·2 𝑇 = πœŒπ‘’π΄(π‘ˆπ‘œ βˆ’ π‘ˆ1) ⟹ 𝑇 = πœŒπ‘’ 4 (π‘ˆπ‘œ βˆ’ 𝑒1) 1.2 Γ— 9.48 Γ— 3.14 Γ— 62 Γ— (12 βˆ’ 6.96) 𝑇 = ⟹ 4

𝑇 = 1620.28𝑁












6 marks





3 marks



Universal Assignment (October 9, 2024) GEEN 1121 Model Solution. Retrieved from https://universalassignment.com/geen-1121-model-solution/.
"GEEN 1121 Model Solution." Universal Assignment - October 9, 2024, https://universalassignment.com/geen-1121-model-solution/
Universal Assignment May 1, 2022 GEEN 1121 Model Solution., viewed October 9, 2024,<https://universalassignment.com/geen-1121-model-solution/>
Universal Assignment - GEEN 1121 Model Solution. [Internet]. [Accessed October 9, 2024]. Available from: https://universalassignment.com/geen-1121-model-solution/
"GEEN 1121 Model Solution." Universal Assignment - Accessed October 9, 2024. https://universalassignment.com/geen-1121-model-solution/
"GEEN 1121 Model Solution." Universal Assignment [Online]. Available: https://universalassignment.com/geen-1121-model-solution/. [Accessed: October 9, 2024]

Please note along with our service, we will provide you with the following deliverables:

Please do not hesitate to put forward any queries regarding the service provision.

We look forward to having you on board with us.

Most Frequent Questions & Answers

Universal Assignment Services is the best place to get help in your all kind of assignment help. We have 172+ experts available, who can help you to get HD+ grades. We also provide Free Plag report, Free Revisions,Best Price in the industry guaranteed.

We provide all kinds of assignmednt help, Report writing, Essay Writing, Dissertations, Thesis writing, Research Proposal, Research Report, Home work help, Question Answers help, Case studies, mathematical and Statistical tasks, Website development, Android application, Resume/CV writing, SOP(Statement of Purpose) Writing, Blog/Article, Poster making and so on.

We are available round the clock, 24X7, 365 days. You can appach us to our Whatsapp number +1 (613)778 8542 or email to info@universalassignment.com . We provide Free revision policy, if you need and revisions to be done on the task, we will do the same for you as soon as possible.

We provide services mainly to all major institutes and Universities in Australia, Canada, China, Malaysia, India, South Africa, New Zealand, Singapore, the United Arab Emirates, the United Kingdom, and the United States.

We provide lucrative discounts from 28% to 70% as per the wordcount, Technicality, Deadline and the number of your previous assignments done with us.

After your assignment request our team will check and update you the best suitable service for you alongwith the charges for the task. After confirmation and payment team will start the work and provide the task as per the deadline.

Yes, we will provide Plagirism free task and a free turnitin report along with the task without any extra cost.

No, if the main requirement is same, you don’t have to pay any additional amount. But it there is a additional requirement, then you have to pay the balance amount in order to get the revised solution.

The Fees are as minimum as $10 per page(1 page=250 words) and in case of a big task, we provide huge discounts.

We accept all the major Credit and Debit Cards for the payment. We do accept Paypal also.

Popular Assignments

ECON20001 Assignment #2

Assignment #2 Due Monday September 30th 2pm AEST The assignment is marked out of 25 points. The weight for each part is indicated following the question text. Style requirements: This assignment requires the submission of a spreadsheet. Please keep THREE decimal places in your answers and include your spreadsheet as

Read More Β»

RES800 Assessment 1 – Research Question and Literature Review

Subject Title Business Research Subject Code RES800 Assessment Title Assessment 1 – Research Question and Literature Review Learning Outcome/s     Utilise critical thinking to analyse managerial problems and formulate relevant research questions and a research design   Apply research theories and methodologies to assist in developing a business research

Read More Β»

Assessment Task 2 Health advocacy and communication plan

Assessment Task 2 Health advocacy and communication plan Rationale and multimedia plan presentation Submission requirements Due date and time:         Rationale: 8pm AEST Monday 23 September 2024 (Week 11) Multimedia plan presentation: 8pm AEST Monday 30 September 2024 (Study Period) % of final grade:         50% of overall grade Word limit: Time

Read More Β»

MLI500 Leadership and innovation Assessment 1

Subject Title Leadership and innovation Subject Code MLI500 Assessment Assessment 1: Leadership development plan Individual/Group Individual Length 1500 words Learning Outcomes LO1 Examine the role of leaders in fostering creativity and innovation LO5 Reflect on and take responsibility for their own learning and leadership development processes Submission   Weighting 30%

Read More Β»

FPC006 Taxation for Financial Planning

Assignment 2 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,000 words Weighting: 40% Download and use the Assignment 2 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the wdue

Read More Β»

TCHR5001 Assessment Brief 1

TCHR5001 Assessment Brief 1 Assessment Details Item Assessment 1: Pitch your pedagogy Type Digital Presentation (Recorded) Due Monday, 16th September 2024, 11:59 pm AEST (start of Week 4) Group type Individual Length 10 minutes (equivalent to 1500 words) Weight 50% Gen AI use Permitted, restrictions apply Aligned ULOS ULO1, ULO2,

Read More Β»

HSH725 Assessment Task 2

turquoise By changing the Heading 3 above with the following teal, turquoise, orange or pink you can change the colour theme of your CloudFirst CloudDeakin template page. When this page is published the Heading 3 above will be removed, but it will still be here in edit mode if you wish to change the colour theme.

Read More Β»

Evidence in Health Assessment 2: Evidence Selection

Evidence in Health Assessment 2: Evidence Selection Student name:                                                                    Student ID: Section 1: PICO and search strategy Evidence Question: Insert evidence question from chosen scenario here including all key PICO terms.       PICO Search Terms                                                                                                                                                                                                          Complete the following table.   Subject headings Keywords Synonyms Population  

Read More Β»

Assessment 1 – Lesson Plan and annotation

ASSESSMENT TASK INFORMATION: XNB390 Assessment 1 – Lesson Plan and annotation This document provides you with information about the requirements for your assessment. Detailed instructions and resources are included for completing the task. The Criterion Reference Assessment (CRA) Marking Matrix that XNB390 markers will use to grade the assessment task

Read More Β»

XNB390 Task 1 – Professional Lesson Plan

XNB390 Template for Task 1 – Professional Lesson Plan CONTEXT FOR LESSON: SOCIAL JUSTICE CONSIDERATIONS: Equity Diversity Supportive Environment UNIT TITLE:    TERM WEEK DAY TIME 1   5           YEAR/CLASS STUDENT NUMBERS/CONTEXT LOCATION LESSON DURATION         28 Children (chl): 16 boys; 12

Read More Β»

A2 Critical Review Assignment

YouthSolutions Summary The summary should summarise the key points of the critical review. It should state the aims/purpose of the program and give an overview of the program or strategy you have chosen. This should be 200 words – included in the word count. Critical analysis and evaluation Your critical

Read More Β»

PUN364 – Workplace activity Assignment

Assessment 1 – DetailsOverviewFor those of you attending the on-campus workshop, you will prepare a report on the simulated simulated inspection below. For those of you who are not attending, you will be required to carry out your own food business inspection under the supervision of a suitably qualified Environmental

Read More Β»

FPC006 Taxation for Financial Planning

Assignment 1 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,600 words Weighting: 40% Download and use the Assignment 1 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the due

Read More Β»

Mental health Nursing assignment

Due Aug 31 This is based on a Mental health Nursing assignment Used Microsoft word The family genogram is a useful tool for the assessment of individuals, couples, and families.  It can yield significant data and lead to important, new patient understandings and insights as multigenerational patterns take shape and

Read More Β»

Assessment 2: Research and Policy Review

Length: 2000 words +/- 10% (excluding references)For this assessment, you must choose eight sources (academic readings and policy documents) as the basis of your Research and Policy Review. You must choose your set of sources from the β€˜REFERENCES MENU’ on the moodle site, noting the minimum number of sources required

Read More Β»

HSN702 – Lifespan Nutrition

Assessment Task: 2 Assignment title: Population Nutrition Report and Reflection Assignment task type: Written report, reflection, and short oral presentation Task details The primary focus of this assignment is on population nutrition. Nutritionists play an important role in promoting population health through optimal nutritional intake. You will be asked to

Read More Β»

Written Assessment 1: Case Study

Billy a 32-year-old male was admitted to the intensive care unit (ICU) with a suspected overdose of tricyclic antidepressants. He is obese (weight 160kg, height 172cm) and has a history of depression and chronic back pain for which he takes oxycodone. On admission to the emergency department, Paramedics were maintaining

Read More Β»

Assessment Task 8 – Plan and prepare to assess competence

Assessment Task 8 – Plan and prepare to assess competence Assessment Task 8 consists of the following sections: Section 1:      Short answer questions Section 2:      Analyse an assessment tool Section 3:      Determine reasonable adjustment and customisation of assessment process Section 4:      Develop an assessment plan Student Instructions To complete this

Read More Β»

Nutrition Reviews Assignment 2 – Part A and Part B

This assignment provides you with the opportunity to determine an important research question that is crucial to address based on your reading of one of the two systematic reviews below (Part A). You will then develop a research proposal outlining the study design and methodology needed to answer that question

Read More Β»

NUR332 – TASK 3 – WRITTEN ASSIGNMENT

NUR332 – TASK 3 – WRITTEN ASSIGNMENT for S2 2024. DESCRIPTION (For this Task 3, the word ‘Indigenous Australians’, refers to the Aboriginal and Torres Strait Islander Peoples of Australia) NUR332 Task 3 – Written Assignment – Due – WEEK 12 – via CANVAS on Wednesday, Midday (1200hrs) 16/10/2024. The

Read More Β»

NUR100 Task 3 – Case study

NUR100 Task 3 – Case study To identify a key child health issue and discuss this issue in the Australian context. You will demonstrate understanding of contemporary families in Australia. You will discuss the role of the family and reflect on how the family can influence the overall health outcomes

Read More Β»

NUR 100 Task 2 Health Promotion Poster

NUR 100 Task 2 Health Promotion Poster The weighting for this assessment is 40%. Task instructions You are not permitted to use generative AI tools in this task. Use of AI in this task constitutes student misconduct and is considered contract cheating. This assessment requires you to develop scholarship and

Read More Β»

BMS 291 Pathophysiology and Pharmacology CASE STUDY

BMS 291 Pathophysiology and Pharmacology CASE STUDY Assessment No: 1 Weighting: 40% Due date Part A: midnight Friday 2nd August 2024 Due date Part B: midnight Sunday 29th September 2024 General information In this assessment, you will develop your skills for analysing, integrating and presenting information for effective evidence-based communication.

Read More Β»

Assessment Task: Health service delivery

Assessment Task Health service delivery is inherently unpredictable. This unpredictability can arise from, for example, the assortment of patient presentations, environmental factors, changing technologies, shifts in health policy and changes in division leadership. It can also arise from changes in policy within an organisation and/or associated health services that impact

Read More Β»

LNDN08002 Business Cultures Resit Assessment

LNDN08002 Business Cultures Resit Assessment Briefing 2023–2024 (Resit for Term 1) Contents Before starting this resit, please: 1 Assessment Element 1: Individual Report 1 Case Report Marking Criteria. 3 Assessment Element 2: Continuing Personal Development (CPD) 4 Guidance for Assessment 2: Reflection and Reflective Practice. 5 Student Marking Criteria –

Read More Β»

Assessment Task 2 – NAPLAN Exercise

Assessment Task 2 (35%) – Evaluation and discussion of test items Assessment Task 2 (35%) – Evaluation and discussion of test items AITSL Standards: This assessmeAITSL Standards: This assessment provides the opportunity to develop evidence that demonstrates these Standards: 1.2        Understand how students learn 1.5        Differentiate teaching to meet with

Read More Β»

EBY014 Degree Tutor Group 2 Assignment

  Assignment Brief Module Degree Tutor Group 2 Module Code EBY014 Programme BA (Hons) Business and Management with   Foundation Year Academic Year 2024/2025 Issue Date 6th May 2024 Semester Component Magnitude Weighting Deadline Learning outcomes assessed 2 1 2000 words Capstone Assessment 100% 26th July, 2024 1/2/3/4 Module Curriculum

Read More Β»

Can't Find Your Assignment?

Open chat
1
Free Assistance
Universal Assignment
Hello πŸ‘‹
How can we help you?