Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved

Student ID:

Student Name:

Course:

Institution Name:

Date:

Contents

INTRODUCTION: 3

OVERVIEW: 4

OBJECTIVES: 5

LOAD CALCULATIONS: 6

PROJECT DOCUMENTATION: 7

ASSUMPTIONS: 7

DEVELOPMENT OF THE OVERALL MODE: 8

CALCULATIONS: 10

RESULTS AND DISCUSSIONS: 11

CONCLUSION: 12

REFERENCES: 14

INTRODUCTION:

Building Science Corporation (BSC) hopes to gather useful information on the performance of energy-efficient technology packages produced by a manufacturer in a tropical environment by conducting advanced testing of new building power packages in Texas. This research focuses on a few important gaps and barriers: (Alenezi,2017).

• Competitive and repeatable designs for acquiring pipelines inside a specified environment by a production builder; and 

• Complete high-performance technology packages that will be compatible with future code changes.

The BSC plans to collect data on:

• Cost and usage of issues by installing the whole heating, ventilation, and air conditioning (HVAC) system in a well-ventilated location in the production rooms.

• A comparison of the many energy-saving approaches available in the industry (energy efficiency vs the Building America (BA) Benchmark versus site energy savings given by frequently used home modelling software).

This pilot community project’s suggested technology bundle is best suited for isolated single-family production houses. The Houston package is scientifically appropriate for other tropical producing locations. This study’s findings on the deployment of a technology package on the size of a productive community, as well as long-term performance data from the housing community, will help to expand the distribution of this package to new houses throughout the tropical environment. The study project’s immediate impact will be to inform the work of David Weekly Homes (DWH) – Houston. Lessons acquired in the economics of design and construction variation can be applied to a production builder’s future business model. The revised 2012 International Energy Conservation Code (IECC) greatly minimises the operational gap between code-built and built-in dwellings in terms of meeting energy efficiency criteria. (Alghoul,2017).

The obligatory installation of the whole HVAC system in an ecologically friendly setting is a fundamental component of the 2012 IECC. This authority obligates builders to create low-cost pipeline systems within thermal enclosures. The project may also help to BA measuring criteria by reducing redundancy and increasing the cost effectiveness of projects that will not only satisfy the existing energy code, but will also meet the projected development code in the future. This is an excellent chance to analyse the importance of a low-cost pipeline system within a specific setting so that makers of production houses may always compete in the market. There is also a chance to assess whether housing developments will satisfy the interim mission of the 2015 IECC. DWH sees this as part of the second long-term plan for keeping a highly efficient design that adheres to existing code requirements. (Smith,2017).

This effort will also give valuable design and construction data for other hot-humid environment production builders, as well as local Home Energy Rating System (HERS) raters and architects.

OVERVIEW:

A process is defined as “a sequence of activities (tasks, steps, events, tasks) that gather input, add value to it, and produce output (product, service, or information) for the client.” To preserve the company’s competitive edge and satisfy consumer expectations, an effective and efficient procedure is required. The process map is a visual assistance for comprehending unseen labour processes. This diagram depicts the connections between functions, inputs, and outputs. The process model in this thesis refers to a collection of map sequences, each with a thorough description. The mapping / modelling process may identify the beginning and ending points of events in a business process, as well as share information between activities and choices made in a business process. A visual representation of a process can aids in process comprehension. Furthermore, inefficient functions may be identified easily using the process model. Tasks that cannot be properly recognised, examined, and connected together cannot be questioned, and so cannot be improved or perfected, just as immeasurable tasks cannot be managed. The first concept is that a process model should have strong process visibility so that process participants may see its role just by glancing at a process model. The second purpose is to partition relationships and dependencies across activities to promote appropriate managerial effort.

The third objective is for the process participant to comprehend other role-players who have information flowing via their activities.(Ishak,2017)

• Program Implementation: A process model aids in determining what to do next, assessing progress, integrating delivery, and analysing the effects of change and the number of alternatives available.

• Foundation for Sustainable Development: A process model can assist in analysing prospective policy adjustments based on total value (investment costs against extra value advantages) and identifying issue sources.

• Information retention and learning: When a process does not perform as planned, the process model can help capture lessons gained. The process model might also be used to generate common names for tasks, deliverables, and collaborations.

• Visualization: A process model allows individuals to see where they are in the process, what they need and should create, and when they should produce it. It serves as the foundation for strong, dedicated, and accountable collaboration across organisations, groups, individuals, and even businesses.

• Training: A process model may assist new workers in understanding what they need to accomplish and why, as well as directing them to further resources.

OBJECTIVES:

The goal of this research is to create a process model that specifies the design process for retrofit heating and air conditioning (HVAC) systems for use in an integrated delivery system. The following objectives were pursued in order to reach this goal: (Khor,2019)

• Creating HVAC design process maps for common restoration projects;

• Recognizing incoming information and the outcomes of HVAC design activities;

• A more refined process model for use in an integrated design process; and

• Validate process maps through conversations, workshops, and case studies.

LOAD CALCULATIONS:

The primary goal of the building and its HVAC system is to create appropriate interior conditions for occupants’ well-being. Inadequate home circumstances have an impact on occupants’ health, productivity, and comfort. Poor indoor air quality reduces productivity and increases absenteeism in office buildings. This may be prevented by investing sufficiently in creating and maintaining a more comfortable home environment. The literature on the impact of the domestic environment on health and productivity discovered a strong correlation between: air intake and temporary sick leave, air quality and productivity, visual and productive air quality, temperature and production, and temperature and sick building syndrome symptoms. It is obvious that special consideration should be given to the comfort of the interior heating system and the purity of the indoor air. As a result, many national and international regulations establish low costs that fulfil interior thermal comfort and air purity. Aside from interior conditions, the advantages of indoor heating are another essential feature that adds greatly to energy consumption, both directly, through lighting and loading equipment, and indirectly, through influencing heating and cooling loads. It might be a primary reason why cooling systems are installed in office buildings in colder locations, such as the United Kingdom. (Ma,2019)

The following are the primary sources of advantages for indoor heating:

• Residents,

• Electronic office equipment, and

• Lighting that is active.

The benchmark values for internal heat benefits are mostly based on limited data gathered from many surveys of various sorts of features and functions. If quantitative data is not available, the most frequent method of calculating the advantages of indoor heating is to utilise applicable pricing based on experience, which is considered acceptable industrial practise. (Meyer,2019)

By utilising daylight management, the benefits of indoor heating, particularly from artificial lighting, may be mitigated. Many of the impacts of direct sunshine on energy savings are documented in the literature. Saving energy for electric lighting and cooling is an easy method to measure. In their study, which was based on a typical Hong Kong office building, daylight was able to maintain an adequate level of interior illumination by around 40% to 60% of the time, resulting in a 50% decrease in the usage of artificial lighting and an extra 11%. Instead of cooling, use a coefficient of performance (COP) 3 to save energy. The same authors conducted field observations on numerous entirely cold air-conditioned cell phone workplaces, which appear to be the polar opposite of managing sunshine and outside lighting. Estimates show that energy savings in processed lighting may be as high as 50% in circuit workplaces. According to comparable research, the savings percentage was significantly lower in the open airline office space, averaging 33 percent. (Risbeck,2021)

PROJECT DOCUMENTATION:

ASSUMPTIONS:

(1) Minimize the number of fittings.

Fittings are costly and cause substantial pressure loss as compared to straight duct.

(2) Use semi-extended plenums.

Plenums minimise the number of transition fittings required and make balance easier.

(3) Seal ductwork.

Table 1 shows the standard duct sealing criteria. Table 2 depicts air leakage from unsealed ductwork longitudinal seams. Longitudinal seam leakage in metal duct accounts for 10 to 15% of overall duct leakage.

(4) Use round duct.

Round duct has less friction loss than rectangular duct for a given perimeter.

(5) Reduce aspect ratio.

Fittings are costly and cause substantial pressure loss as compared to straight duct.

DEVELOPMENT OF THE OVERALL MODE:

Smaller facilities are frequently constructed to house more heat-generating equipment in one big open space, such as engines, generators, switchgear, and buses. Because of the simplicity of the air distribution system and the essential controls, the HVAC system for this type of plant is simple to design. Larger plants sometimes include a service area as well as areas for several machines, stores, offices, control rooms, lunch rooms, and so on. Because several devices might work at various temperatures, rooms must have the same ambient design criteria and may be served by a single HVAC unit. Some rooms, such as uninterrupted power supply (UPS), communications, office, and control rooms, have varied ambient needs and may require separate HVAC equipment to be adjusted.(Rosli,2019)

Plants are often organised into units, with each area corresponding to the serving of the construction necessary for the component. Dependent on the plant outline, heat and refrigeration loads, and required temperature controls, a unit bay may be cooled concurrently with a central air conditioning system, either with a specialised HVAC device or with a combination of a central area with a particular unit of HVAC equipment. Central systems, which may be installed for conventional smoke extraction, will normally maintain the same temperature throughout the facility. When a factory is divided, intermediate systems can become complicated, necessitating the considerable use of open and embedded pipes, fire extinguishers, smoke-reducing materials, and control cutters. (Satrio,2019)

If cool air is required, the following options are usually considered in the following order: air-cooled unit with cold water coils using on-site water (usually limited to temperatures below 65 degrees Fahrenheit [F]); direct evaporative coolers; indirect cooling / direct steam; cold water, and direct expansion coils (DX). Fountain water is another option if there is enough of it. It should be noted that the use of clean (drinking) water to cool HVAC heat-resistant equipment such as condensers is illegal in many areas. (Sultan,2018)

CALCULATIONS:

1)Ceiling temperature (Tc) for room heights (H) less than 20 ft, is given by:

Tc = [1.00 + 0.02h] Tb

Where: h = the room height in feet above the breathing line not to exceed 15-feet,

Tb = the breathing line temperature. The breathing line is measured 5 feet above floor level in ºF.

(2) Average room temperature (Tavg) for room height (H) less than 20 feet is given by:

Tavg = [1.00 + 0.02(H/2 – 5)] Tb

Note: Tavg = (Tc + Tf)/2,

Where: Tf = Floor temperature at h = -5

Stratification is impossible while roof fans are operating, and the temperature differential between the floor and the roof may be minor. The figures (3) and (4) (invented by Jennings) can be used to calculate a conservative medium temperature (at ° F) for big buildings with fan-resistant heat exchangers.

(3) Average temperature (Tavg) for a ceiling height (H) less than or equal to 15 feet is given by:

Tavg = [1.00 + 0.01(H – 5)] Tb

(4) Average temperature (Tavg) for a ceiling height (H) greater than 15 feet is given by:

Tavg = (1.1) Tb + 0.1(H-15)

Column insulation is not required in the winter since the heat delivered to the surface rises to the roof and is lost owing to heat transfer to the roof and higher sections of the wall. Fans of multi-function roofs capable of providing, exhausting, and supplying ambient air give solutions to huge buildings’ separation, cooling, and heating demands. Propeller fans, housing, hoods, filters, and control dampers are all part of these fans. Fans are available as pre-assembled package units with corresponding controls, or they can be incorporated into the needed components. Roof-out ventilators are thermostatically controlled to work constantly in an exhaust mode, where 100 percent external air cools the generator or the vehicle room floor.

RESULTS AND DISCUSSIONS:

An independent database was constructed to assess the capacity of retrospective models to anticipate HVAC system cooling, heating, and auxiliary power requirements. The original database’s various parameters are shared by these authentication database types. They differ from the original records, however, in that they lack fenestration on other walls.

The verification data consists of 1,920 office building models linked to five HVAC systems, as well as construction demand figures. The outcome of the simulation was used to test retrospective models generated from the original database. The statistical parameters in Table 4.26 reflect the equilibrium of the regression models employed in both the original and verification data sets. There are a few occasions where the RMSD of the authentication database exceeds the RMSD of the original database. However, because the discrepancies in RMSDs and residual range are minimal, it can be inferred that sophisticated retrieval models, both single-variable and dual-variable, can estimate HVAC system temperature, cooling, and auxiliary power needs. accuracy.

Four types of HVAC system models were created for the objectives of this study. The first is a variable volume system (VAV), while the second is a constant volume (CAV) system. Both systems are a component of the HVAC air-conditioning system unit and include local heating boxes. A specialised outside air system (FC) and a cooling ceiling system are two storage solutions for air water systems, particularly Fan coil units. The cooling system includes an air conditioner that solely provides fresh air, while the radiator heating system meets the requirement for heat.

CONCLUSION:

The VAV system changes the volume of its source air while processioning the air hoard temperature continuous to match to the decrease of interplanetary consignment during partial load, allowing it to preserve a predefined temperature of the dry bulb area while conserving fans in reduced volume flow. The maximum temperature coils (HC) and cooler (CC) are regulated by the supply air temperature (tsa), which is set at 16 degrees Celsius. Preconditioned air is transported into the space via air-conditioning boxes, where it is heated again if necessary. Each air-conditioning box consists of a soluble coil and hot water, both of which are controlled by a zone temperature (tza) and a damper reversal action. This implies that in hot mode, it begins with a little flow of hot water and a small flow of air. As the load grows, the warm liquid movement increases while waiting for it grasps the extreme flow rate, at which point the air damper begins to exposed to see the consignment.

Unlike the VAV system, the CAV system maintains a constant air movement rate while fluctuating the supply air temperature (tsa) from 16 ° C to 22 ° C to meet the chilling needs of the warmer environment. This method minimises the power of the zone reheat coil and prevents it from overheating. To satisfy the mixed air temperature, an external air mixing box coupled with an inverted air mixer controls the amount of outside air in both systems (tma). Because the feed air supply, which passes through the fan engine, collects the dissipation heat of the fan, the mixed air temperature is roughly one degree Celsius lower than the providing air temperature. When employing an economizer unit, the volume of outside air is augmented wherever feasible to take advantage of unrestricted chilling.

The fan-coil system consists of four pipe tunnels and an air-conditioning unit that delivers 100 percent fresh air, which is adequate to fulfil the fresh air necessities exclusively. To optimise the benefits of free cooling, the fresh air temperature is adjusted to differ the supply air temperature between 16 ° C and 22 ° C. However, due to the comparatively low volume flow rate compared to VAV and CAV systems, free cooling is severely constrained. Each fan coil unit has an air conditioning fan as well as heat and cooling coils. Indoor temperature is meticulous by a local thermostat (tza), which alters the flow of water via a heating or cooling coil in response to local demand. When there is no need to heat or cool, the fan coil fan is turned off. Outdoor air is pre-treated using a heat rescue unit (HRU) with a 65 percent efficiency, which exchanges the temperature between the supplied air flow and the airflow.

The cooling ceiling system consists of the following components: a cold ceiling feature; an air-conditioning unit outfitted with a heat rescue unit that only takes in fresh air (the air side is regulated in the same manner as a Fan-coil system); and radiators to satisfy the requirement for warmth. The cooling area of the set area is extended by 2 ° C due to the manner this system distributes cooling and maintains comfort (partial radiation and partial convection); from 24 to 26 ° C in offices and from 26 to 28 ° C in common spaces. In this work, two types of expanded ceiling elements were investigated: thermally lightweight elements (aluminium panels) and heavyweight applications (cold water pipes embedded directly into concrete ceiling).

In all of the preceding operations, it was assumed that the primary HVAC system was 100 percent efficient and capable of providing enough electricity at the needed temperature to fulfil all requirements at all times. For all tested systems, the temperature of the hot water provided to the basic system was set at 82 ° C, and the temperature of the cold-water supply temperature was set at 7 ° C, apart from in the case of a chilly maximum amount, when it was set at 14 ° C.

REFERENCES:

Alenezi, T. A. N. A New Technique For Automobile Air Conditioning System During The Hot Weather In Kuwait.

Alghoul, S. K. (2017). A comparative study of energy consumption for residential hvac systems using EnergyPlus. American Journal of Mechanical and Industrial Engineering2(2), 98-103.

Du, Y. F., Jiang, L., Duan, C., Li, Y. Z., & Smith, J. S. (2017). Energy consumption scheduling of HVAC considering weather forecast error through the distributionally robust approach. IEEE Transactions on Industrial Informatics14(3), 846-857.

Handbook, A. S. H. R. A. E. (1996). HVAC systems and equipment (Vol. 39). chapter.

Ishak, M. I., Khor, C. Y., Jamalludin, M. R., Rosli, M. U., Shahrin, S., Wasir, N. Y., … & Draman, W. N. A. T. W. (2017). Conceptual design of automotive compressor for integrated portable air conditioning system. In MATEC Web of Conferences (Vol. 97, p. 01040). EDP Sciences.

Khor, M. I., Ismail, C. N.,Ishak, C. Y., Rosli, M. U., Jamalludin, M. R., Hazwan, M. H. M., … & Syafiq, A. M. (2019, August). Investigation on the mechanical properties of banana trunk fibre–reinforced polymer composites for furniture making application. In IOP Conference Series: Materials Science and Engineering (Vol. 551, No. 1, p. 012107). IOP Publishing.

Ma, Z., Ren, H., & Lin, W. (2019). A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. Journal of Cleaner Production240, 118158.

Meyer, D., & Thevenard, D. (2019). PsychroLib: A library of psychrometric functions to calculate thermodynamic properties of air. Journal of Open Source Software4(33), 1137.

Risbeck, M. J., Bazant, M. Z., Jiang, Z., Lee, Y. M., Drees, K. H., & Douglas, J. D. (2021). Modeling and multiobjective optimization of indoor airborne disease transmission risk and associated energy consumption for building HVAC systems. Energy and Buildings253, 111497.

Rosli, M. U., Ishak, M. I., Jamalludin, M. R., Khor, C. Y., Nawi, M. A. M., & Syafiq, A. M. (2019, August). Simulation-based optimization of plastic injection molding parameter for aircraft part fabrication using response surface methodology (RSM). In IOP conference series: materials science and engineering (Vol. 551, No. 1, p. 012108). IOP Publishing.

Satrio, P., Mahlia, T. M. I., Giannetti, N., & Saito, K. (2019). Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm. Sustainable Energy Technologies and Assessments35, 48-57.

Sultan, M., Miyazaki, T., Mahmood, M. H., & Khan, Z. M. (2018). Solar assisted evaporative cooling based passive air-conditioning system for agricultural and livestock applications. J. Eng. Sci. Technol13(3), 693-703.

Order Now

Get an instant solved solution for Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment or order a fresh one. Order Online Now!

No Fields Found.
Universal Assignment (October 2, 2024) Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved. Retrieved from https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/.
"Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved." Universal Assignment - October 2, 2024, https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/
Universal Assignment June 17, 2022 Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved., viewed October 2, 2024,<https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/>
Universal Assignment - Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved. [Internet]. [Accessed October 2, 2024]. Available from: https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/
"Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved." Universal Assignment - Accessed October 2, 2024. https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/
"Heating, Cooling, and Air-Conditioning (HVAC) Systems Assignment Solved." Universal Assignment [Online]. Available: https://universalassignment.com/heating-cooling-and-air-conditioning-hvac-systems-assignment-solved/. [Accessed: October 2, 2024]

Please note along with our service, we will provide you with the following deliverables:

Please do not hesitate to put forward any queries regarding the service provision.

We look forward to having you on board with us.

Most Frequent Questions & Answers

Universal Assignment Services is the best place to get help in your all kind of assignment help. We have 172+ experts available, who can help you to get HD+ grades. We also provide Free Plag report, Free Revisions,Best Price in the industry guaranteed.

We provide all kinds of assignmednt help, Report writing, Essay Writing, Dissertations, Thesis writing, Research Proposal, Research Report, Home work help, Question Answers help, Case studies, mathematical and Statistical tasks, Website development, Android application, Resume/CV writing, SOP(Statement of Purpose) Writing, Blog/Article, Poster making and so on.

We are available round the clock, 24X7, 365 days. You can appach us to our Whatsapp number +1 (613)778 8542 or email to info@universalassignment.com . We provide Free revision policy, if you need and revisions to be done on the task, we will do the same for you as soon as possible.

We provide services mainly to all major institutes and Universities in Australia, Canada, China, Malaysia, India, South Africa, New Zealand, Singapore, the United Arab Emirates, the United Kingdom, and the United States.

We provide lucrative discounts from 28% to 70% as per the wordcount, Technicality, Deadline and the number of your previous assignments done with us.

After your assignment request our team will check and update you the best suitable service for you alongwith the charges for the task. After confirmation and payment team will start the work and provide the task as per the deadline.

Yes, we will provide Plagirism free task and a free turnitin report along with the task without any extra cost.

No, if the main requirement is same, you don’t have to pay any additional amount. But it there is a additional requirement, then you have to pay the balance amount in order to get the revised solution.

The Fees are as minimum as $10 per page(1 page=250 words) and in case of a big task, we provide huge discounts.

We accept all the major Credit and Debit Cards for the payment. We do accept Paypal also.

Popular Assignments

ECON20001 Assignment #2

Assignment #2 Due Monday September 30th 2pm AEST The assignment is marked out of 25 points. The weight for each part is indicated following the question text. Style requirements: This assignment requires the submission of a spreadsheet. Please keep THREE decimal places in your answers and include your spreadsheet as

Read More »

RES800 Assessment 1 – Research Question and Literature Review

Subject Title Business Research Subject Code RES800 Assessment Title Assessment 1 – Research Question and Literature Review Learning Outcome/s     Utilise critical thinking to analyse managerial problems and formulate relevant research questions and a research design   Apply research theories and methodologies to assist in developing a business research

Read More »

Assessment Task 2 Health advocacy and communication plan

Assessment Task 2 Health advocacy and communication plan Rationale and multimedia plan presentation Submission requirements Due date and time:         Rationale: 8pm AEST Monday 23 September 2024 (Week 11) Multimedia plan presentation: 8pm AEST Monday 30 September 2024 (Study Period) % of final grade:         50% of overall grade Word limit: Time

Read More »

MLI500 Leadership and innovation Assessment 1

Subject Title Leadership and innovation Subject Code MLI500 Assessment Assessment 1: Leadership development plan Individual/Group Individual Length 1500 words Learning Outcomes LO1 Examine the role of leaders in fostering creativity and innovation LO5 Reflect on and take responsibility for their own learning and leadership development processes Submission   Weighting 30%

Read More »

FPC006 Taxation for Financial Planning

Assignment 2 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,000 words Weighting: 40% Download and use the Assignment 2 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the wdue

Read More »

TCHR5001 Assessment Brief 1

TCHR5001 Assessment Brief 1 Assessment Details Item Assessment 1: Pitch your pedagogy Type Digital Presentation (Recorded) Due Monday, 16th September 2024, 11:59 pm AEST (start of Week 4) Group type Individual Length 10 minutes (equivalent to 1500 words) Weight 50% Gen AI use Permitted, restrictions apply Aligned ULOS ULO1, ULO2,

Read More »

HSH725 Assessment Task 2

turquoise By changing the Heading 3 above with the following teal, turquoise, orange or pink you can change the colour theme of your CloudFirst CloudDeakin template page. When this page is published the Heading 3 above will be removed, but it will still be here in edit mode if you wish to change the colour theme.

Read More »

Evidence in Health Assessment 2: Evidence Selection

Evidence in Health Assessment 2: Evidence Selection Student name:                                                                    Student ID: Section 1: PICO and search strategy Evidence Question: Insert evidence question from chosen scenario here including all key PICO terms.       PICO Search Terms                                                                                                                                                                                                          Complete the following table.   Subject headings Keywords Synonyms Population  

Read More »

Assessment 1 – Lesson Plan and annotation

ASSESSMENT TASK INFORMATION: XNB390 Assessment 1 – Lesson Plan and annotation This document provides you with information about the requirements for your assessment. Detailed instructions and resources are included for completing the task. The Criterion Reference Assessment (CRA) Marking Matrix that XNB390 markers will use to grade the assessment task

Read More »

XNB390 Task 1 – Professional Lesson Plan

XNB390 Template for Task 1 – Professional Lesson Plan CONTEXT FOR LESSON: SOCIAL JUSTICE CONSIDERATIONS: Equity Diversity Supportive Environment UNIT TITLE:    TERM WEEK DAY TIME 1   5           YEAR/CLASS STUDENT NUMBERS/CONTEXT LOCATION LESSON DURATION         28 Children (chl): 16 boys; 12

Read More »

A2 Critical Review Assignment

YouthSolutions Summary The summary should summarise the key points of the critical review. It should state the aims/purpose of the program and give an overview of the program or strategy you have chosen. This should be 200 words – included in the word count. Critical analysis and evaluation Your critical

Read More »

PUN364 – Workplace activity Assignment

Assessment 1 – DetailsOverviewFor those of you attending the on-campus workshop, you will prepare a report on the simulated simulated inspection below. For those of you who are not attending, you will be required to carry out your own food business inspection under the supervision of a suitably qualified Environmental

Read More »

FPC006 Taxation for Financial Planning

Assignment 1 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,600 words Weighting: 40% Download and use the Assignment 1 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the due

Read More »

Mental health Nursing assignment

Due Aug 31 This is based on a Mental health Nursing assignment Used Microsoft word The family genogram is a useful tool for the assessment of individuals, couples, and families.  It can yield significant data and lead to important, new patient understandings and insights as multigenerational patterns take shape and

Read More »

Assessment 2: Research and Policy Review

Length: 2000 words +/- 10% (excluding references)For this assessment, you must choose eight sources (academic readings and policy documents) as the basis of your Research and Policy Review. You must choose your set of sources from the ‘REFERENCES MENU’ on the moodle site, noting the minimum number of sources required

Read More »

HSN702 – Lifespan Nutrition

Assessment Task: 2 Assignment title: Population Nutrition Report and Reflection Assignment task type: Written report, reflection, and short oral presentation Task details The primary focus of this assignment is on population nutrition. Nutritionists play an important role in promoting population health through optimal nutritional intake. You will be asked to

Read More »

Written Assessment 1: Case Study

Billy a 32-year-old male was admitted to the intensive care unit (ICU) with a suspected overdose of tricyclic antidepressants. He is obese (weight 160kg, height 172cm) and has a history of depression and chronic back pain for which he takes oxycodone. On admission to the emergency department, Paramedics were maintaining

Read More »

Assessment Task 8 – Plan and prepare to assess competence

Assessment Task 8 – Plan and prepare to assess competence Assessment Task 8 consists of the following sections: Section 1:      Short answer questions Section 2:      Analyse an assessment tool Section 3:      Determine reasonable adjustment and customisation of assessment process Section 4:      Develop an assessment plan Student Instructions To complete this

Read More »

Nutrition Reviews Assignment 2 – Part A and Part B

This assignment provides you with the opportunity to determine an important research question that is crucial to address based on your reading of one of the two systematic reviews below (Part A). You will then develop a research proposal outlining the study design and methodology needed to answer that question

Read More »

NUR332 – TASK 3 – WRITTEN ASSIGNMENT

NUR332 – TASK 3 – WRITTEN ASSIGNMENT for S2 2024. DESCRIPTION (For this Task 3, the word ‘Indigenous Australians’, refers to the Aboriginal and Torres Strait Islander Peoples of Australia) NUR332 Task 3 – Written Assignment – Due – WEEK 12 – via CANVAS on Wednesday, Midday (1200hrs) 16/10/2024. The

Read More »

NUR100 Task 3 – Case study

NUR100 Task 3 – Case study To identify a key child health issue and discuss this issue in the Australian context. You will demonstrate understanding of contemporary families in Australia. You will discuss the role of the family and reflect on how the family can influence the overall health outcomes

Read More »

NUR 100 Task 2 Health Promotion Poster

NUR 100 Task 2 Health Promotion Poster The weighting for this assessment is 40%. Task instructions You are not permitted to use generative AI tools in this task. Use of AI in this task constitutes student misconduct and is considered contract cheating. This assessment requires you to develop scholarship and

Read More »

BMS 291 Pathophysiology and Pharmacology CASE STUDY

BMS 291 Pathophysiology and Pharmacology CASE STUDY Assessment No: 1 Weighting: 40% Due date Part A: midnight Friday 2nd August 2024 Due date Part B: midnight Sunday 29th September 2024 General information In this assessment, you will develop your skills for analysing, integrating and presenting information for effective evidence-based communication.

Read More »

Assessment Task: Health service delivery

Assessment Task Health service delivery is inherently unpredictable. This unpredictability can arise from, for example, the assortment of patient presentations, environmental factors, changing technologies, shifts in health policy and changes in division leadership. It can also arise from changes in policy within an organisation and/or associated health services that impact

Read More »

LNDN08002 Business Cultures Resit Assessment

LNDN08002 Business Cultures Resit Assessment Briefing 2023–2024 (Resit for Term 1) Contents Before starting this resit, please: 1 Assessment Element 1: Individual Report 1 Case Report Marking Criteria. 3 Assessment Element 2: Continuing Personal Development (CPD) 4 Guidance for Assessment 2: Reflection and Reflective Practice. 5 Student Marking Criteria –

Read More »

Assessment Task 2 – NAPLAN Exercise

Assessment Task 2 (35%) – Evaluation and discussion of test items Assessment Task 2 (35%) – Evaluation and discussion of test items AITSL Standards: This assessmeAITSL Standards: This assessment provides the opportunity to develop evidence that demonstrates these Standards: 1.2        Understand how students learn 1.5        Differentiate teaching to meet with

Read More »

EBY014 Degree Tutor Group 2 Assignment

  Assignment Brief Module Degree Tutor Group 2 Module Code EBY014 Programme BA (Hons) Business and Management with   Foundation Year Academic Year 2024/2025 Issue Date 6th May 2024 Semester Component Magnitude Weighting Deadline Learning outcomes assessed 2 1 2000 words Capstone Assessment 100% 26th July, 2024 1/2/3/4 Module Curriculum

Read More »

Can't Find Your Assignment?

Open chat
1
Free Assistance
Universal Assignment
Hello 👋
How can we help you?