The importance of risk analysis

The importance of risk analysis

As mentioned in Chapter 1, in terms of risk, too many feasibility studies and appraisals of megaprojects assume projects to exist in a predictable Newtonian world of cause and effect where things go according to plan. In reality, the world of megaproject planning and implementation is a highly stochastic one where things happen only with a certain probabil- ity and rarely turn out as originally intended. The failure to reflect the probabilistic nature of project planning, implementation and operation is a central cause of the poor track record for megaproject performance documented above.1

It is fairly common in feasibility studies and appraisals of major trans- port and other infrastructure projects to make a mechanical sensitivity analysis examining the effect on project viability of hypothetical changes

in, for instance, construction costs, interest rates and revenues.2 The typical range for such sensitivity analysis is from +10 per cent to +20 per cent. It is, on the other hand, unfortunately rare that risk analysis is

made by identifying alternative future states of costs, revenues and effects and a probability distribution estimated for the likelihood that these states would actually occur. This information is required in order to estimate the expected values of costs, revenues and effects, or, in other words, the most likely development, including the associated variances. Approaching risk analysis in this way is essential in order to curb what has been called ‘appraisal optimism’ and to give decision makers a more realistic view of the likely outcome of projects, instead of the incomplete and misleading view on which decisions are often based today.3 Risk analysis is also the basis for risk management, that is the identification of strategies to reduce risks, including how to allocate them to the parties involved and which risks to transfer to professional risk management institutions, namely in- surance companies. In this chapter we describe how risk was treated in the Channel, Great Belt, Øresund and other projects. In addition,

review the implications of risk for costs and financing. Finally, we spell out the lessons to be learnt regarding risk.4

Channel tunnel, Great Belt, Øresund and other projects

When Eurotunnel went public as a company in 1987, investors were told that the project was relatively straightforward. Regarding risk, the prospectus read:

Whilst the undertaking of a tunnelling project of this nature necessarily involves certain construction risks, the techniques to be used are well proven… The Directors, having consulted the Maˆitre d’Oeuvre, believe that 10%… would be a reasonable allowance for the possible impact of unforeseen circumstances on construction costs.5

Two hundred banks communicated the figures for cost and risk to in- vestors, including a large number of small investors. As has been observed elsewhere, anyone persuaded in this way to buy shares in Eurotunnel in the belief that the cost estimate was the mean of possible outcomes was, in effect, misled.6 The cost estimate of the prospectus turned out to be a best possible outcome based on the unlikely assumption that everything would go according to plan with no delays, no changes in performance specifications, no management problems, no problems with contractual arrangements or new technologies or geology, no major conflicts, no po- litical promises not kept, and so on. The assumptions were, in other words, those of an ideal world. The real risks for the Chunnel venture were several times higher than those communicated to potential investors, as evidenced by the fact that the real costs of the project were higher by a factor of two compared with forecasts.

Similarly, before ratifying the Great Belt project, the members of the Danish Parliament were informed by the Minister of Transport regarding risk that:

I do not consider the uncertainty of the overall construction cost estimate for a fixed link across Great Belt to be larger than for other large bridge or tunnel projects carried out in this country.7

However, the cost of even the largest bridge and tunnel projects carried out in Denmark before the Great Belt link was less than a tenth of the original Great Belt budget, and none of these projects included a bored tunnel.8 So for reasons of size and innovation alone, the risks associated with the Great Belt link were more important than for any other trans- port infrastructure project in modern Danish history. In addition, the geological and technological risks – and hence the risks associated with

construction costs – were higher. Nevertheless, no financial or economic risk analysis was made for the Great Belt project.9 As in the case of the Channel tunnel, the cost estimate for the Great Belt link turned out to be optimistic and was closer to an unlikely best possible outcome than to a most likely one. With a cost overrun of 110 per cent for the Great Belt rail tunnel, risks caught up with the rail link, which proved non-viable and was rescued only by cross-subsidisation from the road link (see Chapter 4). Total construction costs were 54 per cent higher than forecast costs. But, unlike the Chunnel, it is taxpayers’ money that has been placed at risk at Great Belt and not investors’ money.

For the Øresund link, partial risk analyses were carried out. In one such analysis, a group of government officials assessed that given histor- ical experience a 50 per cent cost overrun ‘cannot be seen as an unreal- istic maximum estimate’ for the link.10 In addition, the group found the project financially non-viable even without this overrun, as did three other appraisals carried out by officials in the months before the project was presented to the Danish Parliament. Yet, when the Minister of Transport presented the project for ratification in 1991, none of this information was mentioned. Neither the proposed law nor the accompanying comments contained any information about risks of non-viability.

When, more than two years later, it became publicly known that such information existed and had been withheld from Parliament, the result was a sharp critique of the Minister of Transport by the Auditor- General of Denmark.11 The Auditor-General found that the assumptions on which the estimates of project viability were based ‘represent the economic assumptions that have to be made for the project to be self- financing’, that is the assumptions that would make the project seem viable on paper, and not the assumptions that would have reflected the most likely development.12 For later budgets, worked out by the state- owned enterprises responsible for construction of the Danish access links and the fixed link proper, the Auditor-General similarly found that it was ‘less evident’ that the budgets were within claimed levels of uncer- tainty.13 Moreover, the Auditor-General found that the risks regarding the future development of interest rates and financing costs had been ignored and that it ‘would have been natural’ to mention this in the project budgets.14

On this basis, the Auditor-General resolved to monitor the Øresund project and to carry out audits in order to establish whether the assumed basis for the project would actually be realised, including whether the project would, in fact, be self-financing as required by the Danish political agreement behind the project and by the agreement between Denmark and Sweden to build the link.15

The treatment of risk in the Channel tunnel, Great Belt and Øresund projects has clearly been inadequate. Even so, the organisational and institutional set-up of the Great Belt and Øresund links, as loan- and user-financed state-owned enterprises, may be improvements over earlier transport infrastructure projects in Denmark in terms of risk identifica- tion and allocation, because costs, revenues and viability have become more visible than in earlier projects, as have environmental impacts. Still, there is substantial scope for improvement for future projects as shown above and as will become clear from what follows. For other major projects – transport and non-transport alike – the conclusions are similar: the risks involved are high and are typically treated in a deficient, sometimes even deceptive, manner in feasibility studies and project appraisals, if treated at all. In a World Bank study of ninety-two projects, only a handful was found to contain ‘thoughtful’ risk analy- sis showing ‘good practice’.16 Appraisals of World Bank projects are typi- cally more complete and more rigorous than appraisals of other projects. Nevertheless, it is important to note that there are good examples as well. We have already mentioned in Chapters 2–4 the construction of the Paris South-East and Paris Atlantique high-speed rail lines.17 Also, the technologically high-risk Apollo aerospace programme is considered a classic success story of megaproject planning and implementation. The cost overrun on this us$21 billion project was only 5 per cent. Few know, however, that the original budget estimate included us$8 billion of con- tingencies.18 By allowing for risk with foresight, the programme avoided ending up in the type of large cost overrun that destabilises many major projects during implementation. The Apollo approach, with its realistic view of risks, costs and contingencies, should be adopted in more major

projects.

A typology of risks

The main sources of financial risk in major transport infrastructure projects are:

  • construction cost overruns induced by, for instance, government, client, management, contractor or accident;
  • increased financing costs, caused by changes in interest and exchange rates and by delays; and
  • lower than expected revenues, produced by changes in traffic volumes and in payments per unit of traffic.

Although less significant, financial risks are also related to costs of oper- ations, maintenance and management. From an economic point of view the main risks are cost overruns, delays and lower realised demand than that assumed during appraisal.

From an analytical point of view, it is expedient to identify the fol- lowing types of risk of relevance to both a financial and an economic perspective:19

. Project-specific risks;

. Market risks;

. Sector-policy (including force majeure) risks;

. Capital-market risks.

The two first types of risk include those that are conventionally associated with a project, and that have been in focus so far. As for project-specific risks, the conventional assumption is that their effect can be eliminated – at least in part – by risk pooling or risk spreading; see further below. This does not normally apply to market risks that are explained by more funda- mental events that affect economic activities in a similar way, for example the overall economic development in a country. Sector-policy risks arise from the fact that the outcome of a project is dependent on specific sector policies; for transport projects, for instance, complementary investments in access links, taxation of transport or other regulation of road transport or of the environment. Some of these risks can be identified and can also be eliminated by providing a stable regulatory environment and by proper contracting. These types of risk are not necessarily eliminated by having projects operated by state-owned companies. Ultimately, such companies serve the general public, and if changes in regulatory policies imply that a project cannot be used as originally envisaged, private parties, that is taxpayers, will be affected in a negative way, as would be the case if the project were to be operated by a private entity.

Capital-market risks are created through borrowing, in particular in the international market, in order to finance projects. Such risks mainly con- sist of two elements, interest rate risks and currency risks. The capital market is today able to provide financing on conditions that allow borrow- ers to protect themselves against currency and interest rate adjustments in the short and medium term. But, of course, such insurance comes at a cost.

The cost of risk

The condition that a project is associated with risks gives rise to an economic cost. People are normally risk-adverse and are prepared to pay something – an insurance – in  order  to  reduce  or  totally  elimi- nate risks. The cost of risk is an economic concept and reflects the

maximum amount that an individual is willing to pay to eliminate a particular type of risk, so that the future of a particular type of event would become risk free for that individual.20 In practice, different lev- els of riskiness associated with different types of investment are reflected in different minimum rates of returns, which are required in order to persuade individuals to commit their money.21 The lowest return is nor- mally required on government bonds; here the return is about 3–4 per cent in real terms, as these bonds are considered to be virtually risk free. Private-sector debentures are normally associated with a somewhat higher return, say 5–6 per cent in real terms. The return  on  equity, namely ownership capital with risk, starts at about this level, but may be- come much higher depending on the perceived riskiness of the enterprise concerned.22

The risk costs associated with investments in infrastructure can be expected to be high. There are two basic reasons for this. The first is the fact that an investment in a major infrastructure project is basically a sunk cost, that is it cannot be retrieved. Once, for example, a bridge has been built it cannot really be used for anything else, so if the decision to build the bridge turns out later to have been a poor one, it cannot be repaired. The second reason is that the benefits of investments are often highly correlated with economic growth. If economic growth is high, then the project will fare well; conversely if growth is poor, the project will perform poorly. As noted, overall economic performance affects the market risk of a project, particularly when seen in an economic perspective. From an economic viewpoint it is difficult to offer insurance against market risks within a country, as it affects everybody, that is the risks cannot be spread and pooled when seen in a national perspective.

That infrastructure investments are viewed as risky is also brought out by the experience of private-sector involvement in infrastructure projects through a concession. The available data suggest that financing for con- cession companies will only be forthcoming provided: (i) the equity makes up about 20 per cent to 30 per cent of the total financing requirements; and (ii) that those who invest in equity can be expected to receive a return of between 15 and 25 per cent in real terms and after tax.23 Assuming that the remainder of the capital, the long-term debt, can be mobilised at a real cost of 6 per cent, the implication is that the project will have to achieve a financial rate of return of about 7.5 per cent to 12 per cent in real terms (disregarding taxation effects).

The difference between the return required for this type of investment, say 9 per cent, and the return on a virtually risk-free investment, say government bonds at 4–5 per cent, can be viewed as a measure of the cost of risk associated with the project. It should be emphasised that this

type of cost is incurred not only when an infrastructure project is de- veloped through a private concession company. It is also present when the project is developed by a state-owned enterprise and the financing is secured through a sovereign guarantee. In the world of risk there is no such thing as a free lunch. The risk and its costs exist under any cir- cumstances, even if promoters of projects backed by sovereign guarantees often impart the impression to politicians and the general public that this is not the case, as happened for the Øresund and Great Belt links. Here the promoters seemed to hold this belief themselves. One high-ranking Danish Ministry of Transport official expressed it to us in the follow- ing way in his comments on an earlier draft of the manuscript for this book:

In my view you should mention [in the book] that the costs the private sector would demand to have covered for taking on the full risk [of projects] would make the projects more costly. Thus the advantage of financing the Great Belt and Øresund projects by a sovereign guarantee is that this lowered financing costs.24

Not only do we hold that sovereign guarantees hide financing costs instead of lowering them. We also hold that there are reasons to believe that the risk costs associated with financing could increase if the project is underwritten by a sovereign guarantee. The reason is that the guarantee will transfer most of the risks to taxpayers, that is risk bearers who can be assumed to be less able, on average, to protect themselves against risks than those persons who act in the capital market, hence increasing overall risk costs.

In addition, there is good reason to mention a point made by the World Bank that the money saved by lower interest rates on loans backed by sovereign guarantees may be offset by inefficiencies arising from relaxed discipline as a result of such guarantees. Lenders backed by sovereign guarantees have no, or much less, incentive for supervising projects than do commercial banks without such guarantees, resulting in relaxed pressure on project performance. According to the Bank it may take several percentage points of interest advantage to offset even moderate inefficiencies in terms of cost overruns and delays stemming from the inefficient supervision of projects.25 For the Great Belt link the direct interest advantage of a sovereign guarantee on loans is approximately 1 to 2 percentage points, depending on the size and riskiness of the non- guaranteed projects that one compares it with.26 For the Øresund link the interest advantage is of a similar size. If one were to compare interest on guaranteed loans against return on equity, the advantage would be higher.

The total risk costs associated with infrastructure projects can normally be expected to be substantial. Take, for instance, the Øresund link, which cost some d 17 billion (excluding access routes), and is expected to yield a financial return of about 5 per cent. Assume, for example, that the actual requirement is an additional 5 per cent, that is in total 10 per cent in order to ensure that the costs of risk also will be compensated for. Then the cost of risk is equal to about one third of the total investment, that is about d 6 billion. Whilst this example is not an exact calculation of the cost of risk, it illustrates how important it is to take risk into account in project planning and appraisal.

Strategies of risk assessment

The most consequential problem regarding risk analysis in megaproject feasibility studies and decision making is not the absence or inadequacy of risk analysis in itself, but the neglect of relevant downside probabilities in the calculation of project viability.27 To a wide extent, risk is simply dis- regarded in feasibility studies and appraisals by assuming what the World Bank calls the EGAP-principle, ‘Everything Goes According to Plan’.28 We explained above how the unrealistic EGAP-principle was used for the Channel, Great Belt and Øresund links and what the problems involved were.

A cure recommended here, when undertaking a feasibility study, is to substitute what we call the ‘MLD-principle’ for the EGAP-principle, MLD standing for ‘Most Likely Development’. The cure should be seen as part of a wider strategy for public-sector involvement in developing megaprojects, which is taken further in Chapters 10 and 11. By follow- ing the MLD-principle, the roles of feasibility study and appraisal are redefined from the optimistic and unrealistic everything-goes-according- to-plan estimation of project viability to the realistic and experience-based assessment of the most likely development of projects. Carrying out MLD appraisals, the focus is on identifying the most likely risks and the most risky parts in a given project in order to reduce these risks and, if possible, drop those parts. What the World Bank calls ‘switching values’ would be calculated for key variables, including environmental variables, under- stood as the level of the variable at which the project turns from viable to non-viable. The likelihood of switching values actually occurring would be estimated. In addition to this, what the Auditor-General of Sweden calls ‘threshold levels’ would be established for costs, revenues, environ- mental impacts and viability, namely levels that, if crossed, redefine the project as a new project that must be appraised and approved anew. The result of such measures would be more robust projects.

A further technique that should be made use of in feasibility studies sponsored by public-sector organisations is the analysis of worst-case sce- narios, a method frequently employed in the private sector. The basic idea is simple: identify negative conditions from the point of view of the project and analyse the implications for the project’s viability and financing. This approach is helpful for determining the robustness of the project, but also for identifying supplementary actions required in order to mitigate risks and ensure success. Worst-case scenarios may also be useful for identi- fying projects that should be dropped altogether since the risks and their implications appear to be all too significant.

Risk management

In addition to identifying risks carefully and making them visible, a main instrument for reducing the costs of risk is to prepare a risk management plan as part of a feasibility study. The purpose of such a plan is to identify how various risks are to be managed and by whom. In the public sector, the establishment of a credible risk management plan should be a part of the documentation required before any decision is taken on whether to go ahead with a project or not (see Chapter 11).29 Figure 7.1 shows the main elements involved in risk management.

The main challenge to the preparation of a risk management plan is to actually fully identify the scope for risk management, and to communicate that it is much wider than what is normally appreciated. To a large extent this lack of appreciation of the role and scope of proper risk analysis and management is due to the history of contracting for infrastructure facili- ties. Because contracting in the infrastructure sector has to a large extent been on behalf of the public sector, the contracting format has become dominated by public-sector thinking. A key aspect of public-sector be- haviour is thus that it is typically rule-based and not performance-based. In contracting, this is reflected in the fact that contracts typically are based on technical specifications being given to the contractor; the contractor’s task is to build according to these specifications and not necessarily to achieve a certain level of performance (for so-called build contracts, see Chapter 9). However, this also means that the incentive and scope for developing new techniques in order to reduce costs, to reduce certain types of risk, and so on are limited. Consequently, present contracting techniques to a considerable extent eliminate the possibility of managing risks. A main challenge to risk management will therefore be to change the present contracting format, as is further discussed in Chapter 10.

There are several basic approaches to be considered as part of a risk management plan, some of which are partially overlapping. One approach

Figure 7.1 The risk management process

Source: Council of Standards Australia and Council of Standards New Zealand, Risk Management, AS/NZS 4360:1995 (Homebush: Standards Australia and Wellington: Standards New Zealand, 1995), p. 11.

involves eliminating risk altogether. This applies, for example, to certain sector-policy risks, for which it, given the circumstances, may be possible for the entity responsible for undertaking a specific type of infrastructure project to enter into an agreement with the central or local government to

ensure that certain policy actions are not taken, or at least not taken with- out compensation. A second approach involves buying risk management services. This may be the approach used in order to deal with capital- market risks and it might also be available for what some consider as force-majeure risks.

A third approach involves allocating risks to parties who have an in- centive to reduce the negative impacts of risk, either by reducing the likelihood of the event or to reduce the negative impact itself, if the event were to occur. Again this applies to such events that are normally consid- ered to be of a force-majeure nature, although they may not necessarily be a major event. An example may be the occurrence of unexpected geologi- cal phenomena creating delays in the construction of a bridge or a tunnel. By allocating geological risks to contractors from the outset the result is likely to be a more thorough analysis of such risks before contracts are finalised and a faster and more effective containment of negative impacts should unexpected geological phenomena occur during construction. If, conversely, the owner accepts geological risks, or if the placement of such risks is unclear, experience shows this to be a sure road to delays and cost overrun, especially for projects with substantial underground work. Another example may be the occurrence of protest actions during the ini- tial construction phase of an infrastructure facility, where the likelihood of the actions actually taking place can be significantly reduced through specific measures, for instance by replacing the conventional, closed for- mat for megaproject development with a more open and transparent one and by paying adequate compensation to parties negatively affected by projects, as done in Boston’s Big Dig project.

The nature of project-specific risks is such that their costs can be elim- inated by appropriate pooling or risk spreading. There are several institu- tional arrangements to handle this. As has been demonstrated by Arrow and Lind, one approach to achieving effective elimination through risk spreading is to allocate project-specific risks to the public in general.30 A way to achieve this would be to operate the project as part of the public sector, or by securing the financing for the project by way of govern- ment guarantees. But also the private sector has instruments available to achieve risk spreading. One of the reasons for establishing specific project companies for undertaking large infrastructure projects is thus to enable widespread participation by the capital market in the project, thereby allowing individual investors to pool their investments, and al- lowing the specific risks of the project considered to be spread between many investors, and thereby permitting the aggregate cost of this risk to be reduced.

The most difficult risks to manage are, as mentioned, market risks. One reason is that such risks are quite different when seen in an economic perspective from when seen from a financial point of view. As a rule, the economic cost of a market risk cannot be managed; the main issue to be considered is who should bear the cost of this risk, which is an important income distributional question and may also have institutional implications (see further Chapter 9).

Lessons regarding risk

As documented in this and the previous chapters, the risks associated with major infrastructure projects are substantial. Key factors contributing to risk are the facts that the investment will be irreversible and the viability highly dependent on general economic development. Given the magni- tude of the uncertainties involved, feasibility studies of major projects without risk analysis are less than useful since such studies will often de- ceive decision makers and the general public regarding the outcomes of projects. Risks cannot be eliminated from major projects, but they can be acknowledged and their impacts reduced through careful identification and by allocation of risks to those best suited to manage them.31

In most democracies the civil service has an obligation, defined by law, to provide the Cabinet and Parliament with ‘all relevant information’ pertaining to their decision taking and law making. Clearly, risks of cost overruns of 50–100 per cent on multibillion-dollar projects, together with large uncertainties regarding revenues and environmental impacts, are ‘relevant information’. Thus such information must be brought to the attention of politicians and the general public.

The following conclusions can be drawn regarding risk:

  • Public and private investors, parliaments, media and the general pub- lic are routinely inadequately informed and misled regarding the risks involved in megaprojects, cases in point being the Channel tunnel, Great Belt and Øresund projects;
  • A full risk analysis based on the MLD-principle (Most Likely Devel- opment) should be carried out as part of feasibility study and apprai- sal – undertaken by public-sector organisations – for any megaproject. In addition, a risk management plan should be prepared. Such risk

analysis and management would identify the most risky parts of a project. The objective is to reduce risks and to change or drop the most risky parts of the project. Finally, the aim is also to allocate risks appropriately to the involved parties;

  • Risk analysis should also comprise worst-case scenarios, in order to illustrate what happens if worst comes to worst. The experience with flooding and fire in the Great Belt rail tunnel illustrates the pertinence of this point as do the cost overruns and fire in the case of the Channel tunnel;
  • Feasibility studies and risk analyses for future projects should be carried out together with considerations regarding the possible in- stitutional, organisational and financial set-ups for the project. The set-ups will substantially influence risks and costs, just as risks and costs may influence the set-ups. Institutional change may be a pre- requisite for risk reduction, as discussed further in Chapters 10 and 11;
  • Public financing or financing with a sovereign guarantee and no risk capital, as known from Great Belt and Øresund, does not reduce risk or risk costs. It only transfers risk from lenders to taxpayers, and so is likely to increase the total risks and costs of a project.
Order Now

Get expert help for Dealing with risk Assignment and many more. 100% safe, Plag free, 24X7 support, Order Online Now!

No Fields Found.
Universal Assignment (December 22, 2024) The importance of risk analysis. Retrieved from https://universalassignment.com/dealing-with-risk-assignment/.
"The importance of risk analysis." Universal Assignment - December 22, 2024, https://universalassignment.com/dealing-with-risk-assignment/
Universal Assignment July 11, 2022 The importance of risk analysis., viewed December 22, 2024,<https://universalassignment.com/dealing-with-risk-assignment/>
Universal Assignment - The importance of risk analysis. [Internet]. [Accessed December 22, 2024]. Available from: https://universalassignment.com/dealing-with-risk-assignment/
"The importance of risk analysis." Universal Assignment - Accessed December 22, 2024. https://universalassignment.com/dealing-with-risk-assignment/
"The importance of risk analysis." Universal Assignment [Online]. Available: https://universalassignment.com/dealing-with-risk-assignment/. [Accessed: December 22, 2024]

Please note along with our service, we will provide you with the following deliverables:

Please do not hesitate to put forward any queries regarding the service provision.

We look forward to having you on board with us.

Most Frequent Questions & Answers

Universal Assignment Services is the best place to get help in your all kind of assignment help. We have 172+ experts available, who can help you to get HD+ grades. We also provide Free Plag report, Free Revisions,Best Price in the industry guaranteed.

We provide all kinds of assignmednt help, Report writing, Essay Writing, Dissertations, Thesis writing, Research Proposal, Research Report, Home work help, Question Answers help, Case studies, mathematical and Statistical tasks, Website development, Android application, Resume/CV writing, SOP(Statement of Purpose) Writing, Blog/Article, Poster making and so on.

We are available round the clock, 24X7, 365 days. You can appach us to our Whatsapp number +1 (613)778 8542 or email to info@universalassignment.com . We provide Free revision policy, if you need and revisions to be done on the task, we will do the same for you as soon as possible.

We provide services mainly to all major institutes and Universities in Australia, Canada, China, Malaysia, India, South Africa, New Zealand, Singapore, the United Arab Emirates, the United Kingdom, and the United States.

We provide lucrative discounts from 28% to 70% as per the wordcount, Technicality, Deadline and the number of your previous assignments done with us.

After your assignment request our team will check and update you the best suitable service for you alongwith the charges for the task. After confirmation and payment team will start the work and provide the task as per the deadline.

Yes, we will provide Plagirism free task and a free turnitin report along with the task without any extra cost.

No, if the main requirement is same, you don’t have to pay any additional amount. But it there is a additional requirement, then you have to pay the balance amount in order to get the revised solution.

The Fees are as minimum as $10 per page(1 page=250 words) and in case of a big task, we provide huge discounts.

We accept all the major Credit and Debit Cards for the payment. We do accept Paypal also.

Popular Assignments

RES800 Assessment 1 – Research Question and Literature Review

Subject Title Business Research Subject Code RES800 Assessment Title Assessment 1 – Research Question and Literature Review Learning Outcome/s     Utilise critical thinking to analyse managerial problems and formulate relevant research questions and a research design   Apply research theories and methodologies to assist in developing a business research

Read More »

Assessment Task 2 Health advocacy and communication plan

Assessment Task 2 Health advocacy and communication plan Rationale and multimedia plan presentation Submission requirements Due date and time:         Rationale: 8pm AEST Monday 23 September 2024 (Week 11) Multimedia plan presentation: 8pm AEST Monday 30 September 2024 (Study Period) % of final grade:         50% of overall grade Word limit: Time

Read More »

MLI500 Leadership and innovation Assessment 1

Subject Title Leadership and innovation Subject Code MLI500 Assessment Assessment 1: Leadership development plan Individual/Group Individual Length 1500 words Learning Outcomes LO1 Examine the role of leaders in fostering creativity and innovation LO5 Reflect on and take responsibility for their own learning and leadership development processes Submission   Weighting 30%

Read More »

FPC006 Taxation for Financial Planning

Assignment 2 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,000 words Weighting: 40% Download and use the Assignment 2 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the wdue

Read More »

TCHR5001 Assessment Brief 1

TCHR5001 Assessment Brief 1 Assessment Details Item Assessment 1: Pitch your pedagogy Type Digital Presentation (Recorded) Due Monday, 16th September 2024, 11:59 pm AEST (start of Week 4) Group type Individual Length 10 minutes (equivalent to 1500 words) Weight 50% Gen AI use Permitted, restrictions apply Aligned ULOS ULO1, ULO2,

Read More »

HSH725 Assessment Task 2

turquoise By changing the Heading 3 above with the following teal, turquoise, orange or pink you can change the colour theme of your CloudFirst CloudDeakin template page. When this page is published the Heading 3 above will be removed, but it will still be here in edit mode if you wish to change the colour theme.

Read More »

Evidence in Health Assessment 2: Evidence Selection

Evidence in Health Assessment 2: Evidence Selection Student name:                                                                    Student ID: Section 1: PICO and search strategy Evidence Question: Insert evidence question from chosen scenario here including all key PICO terms.       PICO Search Terms                                                                                                                                                                                                          Complete the following table.   Subject headings Keywords Synonyms Population  

Read More »

Assessment 1 – Lesson Plan and annotation

ASSESSMENT TASK INFORMATION: XNB390 Assessment 1 – Lesson Plan and annotation This document provides you with information about the requirements for your assessment. Detailed instructions and resources are included for completing the task. The Criterion Reference Assessment (CRA) Marking Matrix that XNB390 markers will use to grade the assessment task

Read More »

XNB390 Task 1 – Professional Lesson Plan

XNB390 Template for Task 1 – Professional Lesson Plan CONTEXT FOR LESSON: SOCIAL JUSTICE CONSIDERATIONS: Equity Diversity Supportive Environment UNIT TITLE:    TERM WEEK DAY TIME 1   5           YEAR/CLASS STUDENT NUMBERS/CONTEXT LOCATION LESSON DURATION         28 Children (chl): 16 boys; 12

Read More »

A2 Critical Review Assignment

YouthSolutions Summary The summary should summarise the key points of the critical review. It should state the aims/purpose of the program and give an overview of the program or strategy you have chosen. This should be 200 words – included in the word count. Critical analysis and evaluation Your critical

Read More »

PUN364 – Workplace activity Assignment

Assessment 1 – DetailsOverviewFor those of you attending the on-campus workshop, you will prepare a report on the simulated simulated inspection below. For those of you who are not attending, you will be required to carry out your own food business inspection under the supervision of a suitably qualified Environmental

Read More »

FPC006 Taxation for Financial Planning

Assignment 1 Instructions Assignment marks: 95 | Referencing and presentation: 5 Total marks: 100 Total word limit: 3,600 words Weighting: 40% Download and use the Assignment 1 Answer Template provided in KapLearn to complete your assignment. Your assignment should be loaded into KapLearn by 11.30 pm AEST/AEDT on the due

Read More »

Mental health Nursing assignment

Due Aug 31 This is based on a Mental health Nursing assignment Used Microsoft word The family genogram is a useful tool for the assessment of individuals, couples, and families.  It can yield significant data and lead to important, new patient understandings and insights as multigenerational patterns take shape and

Read More »

Assessment 2: Research and Policy Review

Length: 2000 words +/- 10% (excluding references)For this assessment, you must choose eight sources (academic readings and policy documents) as the basis of your Research and Policy Review. You must choose your set of sources from the ‘REFERENCES MENU’ on the moodle site, noting the minimum number of sources required

Read More »

HSN702 – Lifespan Nutrition

Assessment Task: 2 Assignment title: Population Nutrition Report and Reflection Assignment task type: Written report, reflection, and short oral presentation Task details The primary focus of this assignment is on population nutrition. Nutritionists play an important role in promoting population health through optimal nutritional intake. You will be asked to

Read More »

Written Assessment 1: Case Study

Billy a 32-year-old male was admitted to the intensive care unit (ICU) with a suspected overdose of tricyclic antidepressants. He is obese (weight 160kg, height 172cm) and has a history of depression and chronic back pain for which he takes oxycodone. On admission to the emergency department, Paramedics were maintaining

Read More »

Assessment Task 8 – Plan and prepare to assess competence

Assessment Task 8 – Plan and prepare to assess competence Assessment Task 8 consists of the following sections: Section 1:      Short answer questions Section 2:      Analyse an assessment tool Section 3:      Determine reasonable adjustment and customisation of assessment process Section 4:      Develop an assessment plan Student Instructions To complete this

Read More »

Nutrition Reviews Assignment 2 – Part A and Part B

This assignment provides you with the opportunity to determine an important research question that is crucial to address based on your reading of one of the two systematic reviews below (Part A). You will then develop a research proposal outlining the study design and methodology needed to answer that question

Read More »

NUR332 – TASK 3 – WRITTEN ASSIGNMENT

NUR332 – TASK 3 – WRITTEN ASSIGNMENT for S2 2024. DESCRIPTION (For this Task 3, the word ‘Indigenous Australians’, refers to the Aboriginal and Torres Strait Islander Peoples of Australia) NUR332 Task 3 – Written Assignment – Due – WEEK 12 – via CANVAS on Wednesday, Midday (1200hrs) 16/10/2024. The

Read More »

NUR100 Task 3 – Case study

NUR100 Task 3 – Case study To identify a key child health issue and discuss this issue in the Australian context. You will demonstrate understanding of contemporary families in Australia. You will discuss the role of the family and reflect on how the family can influence the overall health outcomes

Read More »

NUR 100 Task 2 Health Promotion Poster

NUR 100 Task 2 Health Promotion Poster The weighting for this assessment is 40%. Task instructions You are not permitted to use generative AI tools in this task. Use of AI in this task constitutes student misconduct and is considered contract cheating. This assessment requires you to develop scholarship and

Read More »

BMS 291 Pathophysiology and Pharmacology CASE STUDY

BMS 291 Pathophysiology and Pharmacology CASE STUDY Assessment No: 1 Weighting: 40% Due date Part A: midnight Friday 2nd August 2024 Due date Part B: midnight Sunday 29th September 2024 General information In this assessment, you will develop your skills for analysing, integrating and presenting information for effective evidence-based communication.

Read More »

Assessment Task: Health service delivery

Assessment Task Health service delivery is inherently unpredictable. This unpredictability can arise from, for example, the assortment of patient presentations, environmental factors, changing technologies, shifts in health policy and changes in division leadership. It can also arise from changes in policy within an organisation and/or associated health services that impact

Read More »

LNDN08002 Business Cultures Resit Assessment

LNDN08002 Business Cultures Resit Assessment Briefing 2023–2024 (Resit for Term 1) Contents Before starting this resit, please: 1 Assessment Element 1: Individual Report 1 Case Report Marking Criteria. 3 Assessment Element 2: Continuing Personal Development (CPD) 4 Guidance for Assessment 2: Reflection and Reflective Practice. 5 Student Marking Criteria –

Read More »

Assessment Task 2 – NAPLAN Exercise

Assessment Task 2 (35%) – Evaluation and discussion of test items Assessment Task 2 (35%) – Evaluation and discussion of test items AITSL Standards: This assessmeAITSL Standards: This assessment provides the opportunity to develop evidence that demonstrates these Standards: 1.2        Understand how students learn 1.5        Differentiate teaching to meet with

Read More »

EBY014 Degree Tutor Group 2 Assignment

  Assignment Brief Module Degree Tutor Group 2 Module Code EBY014 Programme BA (Hons) Business and Management with   Foundation Year Academic Year 2024/2025 Issue Date 6th May 2024 Semester Component Magnitude Weighting Deadline Learning outcomes assessed 2 1 2000 words Capstone Assessment 100% 26th July, 2024 1/2/3/4 Module Curriculum

Read More »

NTW 600 Computer Network and Security

Assessment 2 Information and Rubric Subject Code  NTW 600 Subject Name Computer Network and Security Assessment Number and Title Assessment 2: Cyber Security Threats to IT Infrastructure of a real-world Organisation Assessment Type Group Assessment Length / Duration  1500 words Weighting %  30% Project Report: 20% Presentation :10% (Recorded) Total

Read More »

Can't Find Your Assignment?

Open chat
1
Free Assistance
Universal Assignment
Hello 👋
How can we help you?